


Остановите войну!
for scientists:


default search action
Yonatan Belinkov
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c63]Boaz Carmeli, Ron Meir, Yonatan Belinkov:
Emergent Quantized Communication. AAAI 2023: 11533-11541 - [c62]Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Belinkov, Jonathan Berant, Amir Globerson:
What Are You Token About? Dense Retrieval as Distributions Over the Vocabulary. ACL (1) 2023: 2481-2498 - [c61]Shadi Iskander, Kira Radinsky, Yonatan Belinkov:
Shielded Representations: Protecting Sensitive Attributes Through Iterative Gradient-Based Projection. ACL (Findings) 2023: 5961-5977 - [c60]Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Inbal Magar, Omri Abend, Ehud Karpas, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham:
Parallel Context Windows for Large Language Models. ACL (1) 2023: 6383-6402 - [c59]Hadas Orgad, Yonatan Belinkov:
BLIND: Bias Removal With No Demographics. ACL (1) 2023: 8801-8821 - [c58]Ophir Münz-Manor, Michael Toker, Oren Mishali, Benny Kimelfeld, Yonatan Belinkov, Adir Cohen:
FigureOut - Automatic Detection of Metaphors in Hebrew Across the Eras. DH 2023 - [c57]Edo Dotan, Yonatan Belinkov, Oren Avram, Elya Wygoda, Noa Ecker, Michael Alburquerque, Omri Keren, Gil Loewenthal, Tal Pupko:
Multiple sequence alignment as a sequence-to-sequence learning problem. ICLR 2023 - [c56]Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, David Bau:
Mass-Editing Memory in a Transformer. ICLR 2023 - [i70]Hadas Orgad, Bahjat Kawar, Yonatan Belinkov:
Editing Implicit Assumptions in Text-to-Image Diffusion Models. CoRR abs/2303.08084 (2023) - [i69]Adir Rahamim, Yonatan Belinkov:
ContraSim - A Similarity Measure Based on Contrastive Learning. CoRR abs/2303.16992 (2023) - [i68]Shadi Iskander, Kira Radinsky, Yonatan Belinkov:
Shielded Representations: Protecting Sensitive Attributes Through Iterative Gradient-Based Projection. CoRR abs/2305.10204 (2023) - [i67]Shahar Katz, Yonatan Belinkov:
Interpreting Transformer's Attention Dynamic Memory and Visualizing the Semantic Information Flow of GPT. CoRR abs/2305.13417 (2023) - [i66]Alessandro Stolfo, Yonatan Belinkov, Mrinmaya Sachan:
Understanding Arithmetic Reasoning in Language Models using Causal Mediation Analysis. CoRR abs/2305.15054 (2023) - [i65]Dana Arad, Hadas Orgad, Yonatan Belinkov:
ReFACT: Updating Text-to-Image Models by Editing the Text Encoder. CoRR abs/2306.00738 (2023) - [i64]Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine, Nir Ratner, Yonatan Belinkov, Omri Abend, Kevin Leyton-Brown, Amnon Shashua, Yoav Shoham:
Generating Benchmarks for Factuality Evaluation of Language Models. CoRR abs/2307.06908 (2023) - [i63]Itay Itzhak, Gabriel Stanovsky, Nir Rosenfeld, Yonatan Belinkov:
Instructed to Bias: Instruction-Tuned Language Models Exhibit Emergent Cognitive Bias. CoRR abs/2308.00225 (2023) - [i62]Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas, Yonatan Belinkov, David Bau
:
Linearity of Relation Decoding in Transformer Language Models. CoRR abs/2308.09124 (2023) - [i61]Rohit Gandikota, Hadas Orgad, Yonatan Belinkov, Joanna Materzynska, David Bau
:
Unified Concept Editing in Diffusion Models. CoRR abs/2308.14761 (2023) - [i60]Michael Hanna, Yonatan Belinkov, Sandro Pezzelle:
When Language Models Fall in Love: Animacy Processing in Transformer Language Models. CoRR abs/2310.15004 (2023) - 2022
- [j9]Yonatan Belinkov:
Probing Classifiers: Promises, Shortcomings, and Advances. Comput. Linguistics 48(1): 207-219 (2022) - [c55]Joe Stacey, Yonatan Belinkov, Marek Rei:
Supervising Model Attention with Human Explanations for Robust Natural Language Inference. AAAI 2022: 11349-11357 - [c54]Kerem Zaman, Yonatan Belinkov:
A Multilingual Perspective Towards the Evaluation of Attribution Methods in Natural Language Inference. EMNLP 2022: 1556-1576 - [c53]Omer Antverg, Yonatan Belinkov:
On the Pitfalls of Analyzing Individual Neurons in Language Models. ICLR 2022 - [c52]Hadas Orgad, Seraphina Goldfarb-Tarrant, Yonatan Belinkov:
How Gender Debiasing Affects Internal Model Representations, and Why It Matters. NAACL-HLT 2022: 2602-2628 - [c51]Rachit Bansal, Danish Pruthi, Yonatan Belinkov:
Measures of Information Reflect Memorization Patterns. NeurIPS 2022 - [c50]Kevin Meng, David Bau, Alex Andonian, Yonatan Belinkov:
Locating and Editing Factual Associations in GPT. NeurIPS 2022 - [c49]Dimion Asael, Zachary M. Ziegler, Yonatan Belinkov:
A Generative Approach for Mitigating Structural Biases in Natural Language Inference. *SEM@NAACL-HLT 2022: 186-199 - [e4]Jasmijn Bastings, Yonatan Belinkov, Yanai Elazar, Dieuwke Hupkes, Naomi Saphra, Sarah Wiegreffe:
Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2022, Abu Dhabi, United Arab Emirates (Hybrid), December 8, 2022. Association for Computational Linguistics 2022, ISBN 978-1-959429-05-0 [contents] - [i59]Kevin Meng, David Bau, Alex Andonian, Yonatan Belinkov:
Locating and Editing Factual Knowledge in GPT. CoRR abs/2202.05262 (2022) - [i58]Kerem Zaman, Yonatan Belinkov:
A Multilingual Perspective Towards the Evaluation of Attribution Methods in Natural Language Inference. CoRR abs/2204.05428 (2022) - [i57]Hadas Orgad, Seraphina Goldfarb-Tarrant, Yonatan Belinkov:
How Gender Debiasing Affects Internal Model Representations, and Why It Matters. CoRR abs/2204.06827 (2022) - [i56]Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir Ratner, Yoav Shoham, Hofit Bata, Yoav Levine, Kevin Leyton-Brown, Dor Muhlgay, Noam Rozen, Erez Schwartz, Gal Shachaf, Shai Shalev-Shwartz, Amnon Shashua, Moshe Tennenholtz:
MRKL Systems: A modular, neuro-symbolic architecture that combines large language models, external knowledge sources and discrete reasoning. CoRR abs/2205.00445 (2022) - [i55]Omer Antverg, Eyal Ben-David, Yonatan Belinkov:
IDANI: Inference-time Domain Adaptation via Neuron-level Interventions. CoRR abs/2206.00259 (2022) - [i54]Yanai Elazar, Nora Kassner, Shauli Ravfogel, Amir Feder, Abhilasha Ravichander, Marius Mosbach, Yonatan Belinkov, Hinrich Schütze, Yoav Goldberg:
Measuring Causal Effects of Data Statistics on Language Model's 'Factual' Predictions. CoRR abs/2207.14251 (2022) - [i53]Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, David Bau
:
Mass-Editing Memory in a Transformer. CoRR abs/2210.07229 (2022) - [i52]Rachit Bansal, Danish Pruthi, Yonatan Belinkov:
Measures of Information Reflect Memorization Patterns. CoRR abs/2210.09404 (2022) - [i51]Hadas Orgad, Yonatan Belinkov:
Choose Your Lenses: Flaws in Gender Bias Evaluation. CoRR abs/2210.11471 (2022) - [i50]Boaz Carmeli, Ron Meir, Yonatan Belinkov:
Emergent Quantized Communication. CoRR abs/2211.02412 (2022) - [i49]Ori Ram, Liat Bezalel, Adi Zicher, Yonatan Belinkov, Jonathan Berant, Amir Globerson:
What Are You Token About? Dense Retrieval as Distributions Over the Vocabulary. CoRR abs/2212.10380 (2022) - [i48]Hadas Orgad, Yonatan Belinkov:
Debiasing NLP Models Without Demographic Information. CoRR abs/2212.10563 (2022) - [i47]Nir Ratner, Yoav Levine, Yonatan Belinkov, Ori Ram, Omri Abend, Ehud Karpas, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham:
Parallel Context Windows Improve In-Context Learning of Large Language Models. CoRR abs/2212.10947 (2022) - 2021
- [c48]Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart M. Shieber, Tal Linzen, Yonatan Belinkov:
Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models. ACL/IJCNLP (1) 2021: 1828-1843 - [c47]Abhilasha Ravichander, Yonatan Belinkov, Eduard H. Hovy:
Probing the Probing Paradigm: Does Probing Accuracy Entail Task Relevance? EACL 2021: 3363-3377 - [c46]Michael Mendelson, Yonatan Belinkov:
Debiasing Methods in Natural Language Understanding Make Bias More Accessible. EMNLP (1) 2021: 1545-1557 - [c45]Yu-An Chung, Yonatan Belinkov, James R. Glass:
Similarity Analysis of Self-Supervised Speech Representations. ICASSP 2021: 3040-3044 - [c44]Rabeeh Karimi Mahabadi, Yonatan Belinkov, James Henderson
:
Variational Information Bottleneck for Effective Low-Resource Fine-Tuning. ICLR 2021 - [c43]Victor Sanh, Thomas Wolf, Yonatan Belinkov, Alexander M. Rush
:
Learning from others' mistakes: Avoiding dataset biases without modeling them. ICLR 2021 - [c42]Yana Dranker, He He, Yonatan Belinkov:
IRM - when it works and when it doesn't: A test case of natural language inference. NeurIPS 2021: 18212-18224 - [e3]Jasmijn Bastings, Yonatan Belinkov, Emmanuel Dupoux, Mario Giulianelli, Dieuwke Hupkes, Yuval Pinter, Hassan Sajjad:
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2021, Punta Cana, Dominican Republic, November 11, 2021. Association for Computational Linguistics 2021, ISBN 978-1-955917-06-3 [contents] - [i46]Yonatan Belinkov:
Probing Classifiers: Promises, Shortcomings, and Alternatives. CoRR abs/2102.12452 (2021) - [i45]Joe Stacey, Yonatan Belinkov, Marek Rei:
Natural Language Inference with a Human Touch: Using Human Explanations to Guide Model Attention. CoRR abs/2104.08142 (2021) - [i44]Rabeeh Karimi Mahabadi, Yonatan Belinkov, James Henderson:
Variational Information Bottleneck for Effective Low-Resource Fine-Tuning. CoRR abs/2106.05469 (2021) - [i43]Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart M. Shieber, Tal Linzen, Yonatan Belinkov:
Causal Analysis of Syntactic Agreement Mechanisms in Neural Language Models. CoRR abs/2106.06087 (2021) - [i42]Dimion Asael, Zachary M. Ziegler, Yonatan Belinkov:
A Generative Approach for Mitigating Structural Biases in Natural Language Inference. CoRR abs/2108.14006 (2021) - [i41]Michael Mendelson, Yonatan Belinkov:
Debiasing Methods in Natural Language Understanding Make Bias More Accessible. CoRR abs/2109.04095 (2021) - [i40]Omer Antverg, Yonatan Belinkov:
On the Pitfalls of Analyzing Individual Neurons in Language Models. CoRR abs/2110.07483 (2021) - 2020
- [j8]Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad
, James R. Glass:
On the Linguistic Representational Power of Neural Machine Translation Models. Comput. Linguistics 46(1): 1-52 (2020) - [c41]Yonatan Belinkov, Sebastian Gehrmann, Ellie Pavlick:
Interpretability and Analysis in Neural NLP. ACL (tutorial) 2020: 1-5 - [c40]John M. Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James R. Glass:
Similarity Analysis of Contextual Word Representation Models. ACL 2020: 4638-4655 - [c39]Mostafa Abdou, Vinit Ravishankar, Maria Barrett, Yonatan Belinkov, Desmond Elliott
, Anders Søgaard:
The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. ACL 2020: 7590-7604 - [c38]Rabeeh Karimi Mahabadi, Yonatan Belinkov, James Henderson
:
End-to-End Bias Mitigation by Modelling Biases in Corpora. ACL 2020: 8706-8716 - [c37]Nadir Durrani, Hassan Sajjad, Fahim Dalvi, Yonatan Belinkov:
Analyzing Individual Neurons in Pre-trained Language Models. EMNLP (1) 2020: 4865-4880 - [c36]Fahim Dalvi, Hassan Sajjad, Nadir Durrani, Yonatan Belinkov:
Analyzing Redundancy in Pretrained Transformer Models. EMNLP (1) 2020: 4908-4926 - [c35]Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, Nir Shavit:
A Constructive Prediction of the Generalization Error Across Scales. ICLR 2020 - [c34]Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, Stuart M. Shieber:
Investigating Gender Bias in Language Models Using Causal Mediation Analysis. NeurIPS 2020 - [c33]Lucia Specia, Zhenhao Li, Juan Miguel Pino, Vishrav Chaudhary, Francisco Guzmán, Graham Neubig, Nadir Durrani, Yonatan Belinkov, Philipp Koehn, Hassan Sajjad, Paul Michel, Xian Li:
Findings of the WMT 2020 Shared Task on Machine Translation Robustness. WMT@EMNLP 2020: 76-91 - [e2]Afra Alishahi, Yonatan Belinkov, Grzegorz Chrupala, Dieuwke Hupkes, Yuval Pinter, Hassan Sajjad:
Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@EMNLP 2020, Online, November 2020. Association for Computational Linguistics 2020, ISBN 978-1-952148-86-6 [contents] - [i39]Fahim Dalvi, Hassan Sajjad, Nadir Durrani, Yonatan Belinkov:
Exploiting Redundancy in Pre-trained Language Models for Efficient Transfer Learning. CoRR abs/2004.04010 (2020) - [i38]Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, Stuart M. Shieber:
Causal Mediation Analysis for Interpreting Neural NLP: The Case of Gender Bias. CoRR abs/2004.12265 (2020) - [i37]Abhilasha Ravichander, Yonatan Belinkov, Eduard H. Hovy:
Probing the Probing Paradigm: Does Probing Accuracy Entail Task Relevance? CoRR abs/2005.00719 (2020) - [i36]John M. Wu, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James R. Glass:
Similarity Analysis of Contextual Word Representation Models. CoRR abs/2005.01172 (2020) - [i35]Mostafa Abdou, Vinit Ravishankar, Maria Barrett, Yonatan Belinkov, Desmond Elliott, Anders Søgaard:
The Sensitivity of Language Models and Humans to Winograd Schema Perturbations. CoRR abs/2005.01348 (2020) - [i34]Abdelrhman Saleh, Tovly Deutsch, Stephen Casper, Yonatan Belinkov, Stuart M. Shieber:
Probing Neural Dialog Models for Conversational Understanding. CoRR abs/2006.08331 (2020) - [i33]Nadir Durrani, Hassan Sajjad, Fahim Dalvi, Yonatan Belinkov:
Analyzing Individual Neurons in Pre-trained Language Models. CoRR abs/2010.02695 (2020) - [i32]Yu-An Chung, Yonatan Belinkov, James R. Glass:
Similarity Analysis of Self-Supervised Speech Representations. CoRR abs/2010.11481 (2020) - [i31]Victor Sanh, Thomas Wolf, Yonatan Belinkov, Alexander M. Rush:
Learning from others' mistakes: Avoiding dataset biases without modeling them. CoRR abs/2012.01300 (2020)
2010 – 2019
- 2019
- [j7]Salvatore Romeo, Giovanni Da San Martino
, Yonatan Belinkov, Alberto Barrón-Cedeño, Mohamed Eldesouki
, Kareem Darwish, Hamdy Mubarak, James R. Glass, Alessandro Moschitti:
Language processing and learning models for community question answering in Arabic. Inf. Process. Manag. 56(2): 274-290 (2019) - [j6]Yonatan Belinkov, Alexander Magidow, Alberto Barrón-Cedeño, Avi Shmidman, Maxim Romanov
:
Studying the history of the Arabic language: language technology and a large-scale historical corpus. Lang. Resour. Evaluation 53(4): 771-805 (2019) - [j5]Yonatan Belinkov, James R. Glass:
Analysis Methods in Neural Language Processing: A Survey. Trans. Assoc. Comput. Linguistics 7: 49-72 (2019) - [c32]Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, James R. Glass:
What Is One Grain of Sand in the Desert? Analyzing Individual Neurons in Deep NLP Models. AAAI 2019: 6309-6317 - [c31]Fahim Dalvi, Avery Nortonsmith, Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, James R. Glass:
NeuroX: A Toolkit for Analyzing Individual Neurons in Neural Networks. AAAI 2019: 9851-9852 - [c30]Yonatan Belinkov, Adam Poliak, Stuart M. Shieber, Benjamin Van Durme, Alexander M. Rush
:
Don't Take the Premise for Granted: Mitigating Artifacts in Natural Language Inference. ACL (1) 2019: 877-891 - [c29]Hongyin Luo, Lan Jiang, Yonatan Belinkov, Jim Glass:
Improving Neural Language Models by Segmenting, Attending, and Predicting the Future. ACL (1) 2019: 1483-1493 - [c28]Jesse Vig, Yonatan Belinkov:
Analyzing the Structure of Attention in a Transformer Language Model. BlackboxNLP@ACL 2019: 63-76 - [c27]Michael Hahn, Frank Keller, Yonatan Bisk, Yonatan Belinkov:
Character-based Surprisal as a Model of Reading Difficulty in the Presence of Errors. CogSci 2019: 401-407 - [c26]Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James R. Glass:
Identifying and Controlling Important Neurons in Neural Machine Translation. ICLR (Poster) 2019 - [c25]Yonatan Belinkov, Ahmed Ali, James R. Glass:
Analyzing Phonetic and Graphemic Representations in End-to-End Automatic Speech Recognition. INTERSPEECH 2019: 81-85 - [c24]Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, Noah A. Smith:
Linguistic Knowledge and Transferability of Contextual Representations. NAACL-HLT (1) 2019: 1073-1094 - [c23]Nadir Durrani, Fahim Dalvi, Hassan Sajjad, Yonatan Belinkov, Preslav Nakov:
One Size Does Not Fit All: Comparing NMT Representations of Different Granularities. NAACL-HLT (1) 2019: 1504-1516 - [c22]Yonatan Belinkov, James R. Glass:
Analysis Methods in Neural Language Processing: A Survey. NAACL-HLT (1) 2019: 3348-3354 - [c21]Yonatan Belinkov, Adam Poliak, Stuart M. Shieber, Benjamin Van Durme, Alexander M. Rush
:
On Adversarial Removal of Hypothesis-only Bias in Natural Language Inference. *SEM@NAACL-HLT 2019: 256-262 - [c20]Xian Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Miguel Pino, Hassan Sajjad:
Findings of the First Shared Task on Machine Translation Robustness. WMT (2) 2019: 91-102 - [e1]Tal Linzen, Grzegorz Chrupala, Yonatan Belinkov, Dieuwke Hupkes:
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, BlackboxNLP@ACL 2019, Florence, Italy, August 1, 2019. Association for Computational Linguistics 2019, ISBN 978-1-950737-30-7 [contents] - [i30]Michael Hahn, Frank Keller, Yonatan Bisk, Yonatan Belinkov:
Character-based Surprisal as a Model of Human Reading in the Presence of Errors. CoRR abs/1902.00595 (2019) - [i29]Nelson F. Liu, Matt Gardner, Yonatan Belinkov, Matthew E. Peters, Noah A. Smith:
Linguistic Knowledge and Transferability of Contextual Representations. CoRR abs/1903.08855 (2019) - [i28]Hongyin Luo, Lan Jiang, Yonatan Belinkov, James R. Glass:
Improving Neural Language Models by Segmenting, Attending, and Predicting the Future. CoRR abs/1906.01702 (2019) - [i27]Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, Stuart M. Shieber:
LSTM Networks Can Perform Dynamic Counting. CoRR abs/1906.03648 (2019) - [i26]Jesse Vig, Yonatan Belinkov:
Analyzing the Structure of Attention in a Transformer Language Model. CoRR abs/1906.04284 (2019) - [i25]Gabriel Grand
, Yonatan Belinkov:
Adversarial Regularization for Visual Question Answering: Strengths, Shortcomings, and Side Effects. CoRR abs/1906.08430 (2019) - [i24]Xian Li, Paul Michel, Antonios Anastasopoulos, Yonatan Belinkov, Nadir Durrani, Orhan Firat, Philipp Koehn, Graham Neubig, Juan Miguel Pino, Hassan Sajjad:
Findings of the First Shared Task on Machine Translation Robustness. CoRR abs/1906.11943 (2019) - [i23]Yonatan Belinkov, Ahmed Ali, James R. Glass:
Analyzing Phonetic and Graphemic Representations in End-to-End Automatic Speech Recognition. CoRR abs/1907.04224 (2019) - [i22]Yonatan Belinkov, Adam Poliak, Stuart M. Shieber, Benjamin Van Durme, Alexander M. Rush:
Don't Take the Premise for Granted: Mitigating Artifacts in Natural Language Inference. CoRR abs/1907.04380 (2019) - [i21]Yonatan Belinkov, Adam Poliak, Stuart M. Shieber, Benjamin Van Durme, Alexander M. Rush:
On Adversarial Removal of Hypothesis-only Bias in Natural Language Inference. CoRR abs/1907.04389 (2019) - [i20]Jonathan S. Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, Nir Shavit:
A Constructive Prediction of the Generalization Error Across Scales. CoRR abs/1909.12673 (2019) - [i19]Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, James R. Glass:
On the Linguistic Representational Power of Neural Machine Translation Models. CoRR abs/1911.00317 (2019) - [i18]Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, Stuart M. Shieber:
Memory-Augmented Recurrent Neural Networks Can Learn Generalized Dyck Languages. CoRR abs/1911.03329 (2019) - 2018
- [b1]Yonatan Belinkov:
On internal language representations in deep learning: an analysis of machine translation and speech recognition. Massachusetts Institute of Technology, Cambridge, USA, 2018 - [c19]Yonatan Belinkov, Yonatan Bisk:
Synthetic and Natural Noise Both Break Neural Machine Translation. ICLR 2018 - [c18]Adam Poliak, Yonatan Belinkov, James R. Glass, Benjamin Van Durme:
On the Evaluation of Semantic Phenomena in Neural Machine Translation Using Natural Language Inference. NAACL-HLT (2) 2018: 513-523 - [i17]Yonatan Belinkov, Lluís Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James R. Glass:
Evaluating Layers of Representation in Neural Machine Translation on Part-of-Speech and Semantic Tagging Tasks. CoRR abs/1801.07772 (2018) - [i16]Adam Poliak, Yonatan Belinkov, James R. Glass, Benjamin Van Durme:
On the Evaluation of Semantic Phenomena in Neural Machine Translation Using Natural Language Inference. CoRR abs/1804.09779 (2018) - [i15]Yonatan Belinkov, Alexander Magidow, Alberto Barrón-Cedeño, Avi Shmidman, Maxim Romanov:
Studying the History of the Arabic Language: Language Technology and a Large-Scale Historical Corpus. CoRR abs/1809.03891 (2018) - [i14]Mirac Suzgun, Yonatan Belinkov, Stuart M. Shieber:
On Evaluating the Generalization of LSTM Models in Formal Languages. CoRR abs/1811.01001 (2018) - [i13]Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, James R. Glass:
Identifying and Controlling Important Neurons in Neural Machine Translation. CoRR abs/1811.01157 (2018) - [i12]Yonatan Belinkov, James R. Glass:
Analysis Methods in Neural Language Processing: A Survey. CoRR abs/1812.08951 (2018) - [i11]Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau, James R. Glass:
What Is One Grain of Sand in the Desert? Analyzing Individual Neurons in Deep NLP Models. CoRR abs/1812.09355 (2018) - [i10]