


default search action
SemEval@NAACL-HLT 2016: San Diego, California, USA
- Steven Bethard, Daniel M. Cer, Marine Carpuat, David Jurgens, Preslav Nakov, Torsten Zesch:

Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2016, San Diego, CA, USA, June 16-17, 2016. The Association for Computer Linguistics 2016, ISBN 978-1-941643-95-2 - Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, Veselin Stoyanov:

SemEval-2016 Task 4: Sentiment Analysis in Twitter. 1-18 - Maria Pontiki

, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos
, Suresh Manandhar, Mohammad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin
, Orphée De Clercq, Véronique Hoste, Marianna Apidianaki
, Xavier Tannier, Natalia V. Loukachevitch, Evgeniy V. Kotelnikov, Núria Bel, Salud María Jiménez-Zafra
, Gülsen Eryigit
:
SemEval-2016 Task 5: Aspect Based Sentiment Analysis. 19-30 - Saif M. Mohammad, Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu, Colin Cherry:

SemEval-2016 Task 6: Detecting Stance in Tweets. 31-41 - Svetlana Kiritchenko, Saif M. Mohammad, Mohammad Salameh:

SemEval-2016 Task 7: Determining Sentiment Intensity of English and Arabic Phrases. 42-51 - Mahmoud Nabil, Amir F. Atiya

, Mohamed Aly
:
CUFE at SemEval-2016 Task 4: A Gated Recurrent Model for Sentiment Classification. 52-57 - Giovanni Da San Martino, Wei Gao, Fabrizio Sebastiani:

QCRI at SemEval-2016 Task 4: Probabilistic Methods for Binary and Ordinal Quantification. 58-63 - Stefan Räbiger, Mishal Kazmi, Yücel Saygin, Peter Schüller, Myra Spiliopoulou:

SteM at SemEval-2016 Task 4: Applying Active Learning to Improve Sentiment Classification. 64-70 - Zhengchen Zhang, Chen Zhang, Fuxiang Wu, Dong-Yan Huang, Weisi Lin, Minghui Dong:

I2RNTU at SemEval-2016 Task 4: Classifier Fusion for Polarity Classification in Twitter. 71-78 - David Vilares

, Yerai Doval, Miguel A. Alonso, Carlos Gómez-Rodríguez
:
LyS at SemEval-2016 Task 4: Exploiting Neural Activation Values for Twitter Sentiment Classification and Quantification. 79-84 - Georgios Balikas, Massih-Reza Amini:

TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification. 85-91 - Andrea Esuli

:
ISTI-CNR at SemEval-2016 Task 4: Quantification on an Ordinal Scale. 92-95 - Stavros Giorgis, Apostolos Rousas, John Pavlopoulos

, Prodromos Malakasiotis, Ion Androutsopoulos
:
aueb.twitter.sentiment at SemEval-2016 Task 4: A Weighted Ensemble of SVMs for Twitter Sentiment Analysis. 96-99 - Vikrant Yadav:

thecerealkiller at SemEval-2016 Task 4: Deep Learning based System for Classifying Sentiment of Tweets on Two Point Scale. 100-102 - Brage Ekroll Jahren, Valerij Fredriksen, Björn Gambäck

, Lars Bungum:
NTNUSentEval at SemEval-2016 Task 4: Combining General Classifiers for Fast Twitter Sentiment Analysis. 103-108 - Esteban Castillo, Ofelia Cervantes, Darnes Vilariño

, David Báez:
UDLAP at SemEval-2016 Task 4: Sentiment Quantification Using a Graph Based Representation. 109-114 - Jonathan Juncal-Martínez, Tamara Álvarez-López, Milagros Fernández Gavilanes, Enrique Costa-Montenegro, Francisco Javier González-Castaño:

GTI at SemEval-2016 Task 4: Training a Naive Bayes Classifier using Features of an Unsupervised System. 115-119 - Steven Du, Xi Zhang:

Aicyber at SemEval-2016 Task 4: i-vector based sentence representation. 120-125 - Mateusz Lango

, Dariusz Brzezinski
, Jerzy Stefanowski
:
PUT at SemEval-2016 Task 4: The ABC of Twitter Sentiment Analysis. 126-132 - Vittoria Cozza, Marinella Petrocchi:

mib at SemEval-2016 Task 4a: Exploiting lexicon based features for Sentiment Analysis in Twitter. 133-138 - Hang Gao, Tim Oates:

MDSENT at SemEval-2016 Task 4: A Supervised System for Message Polarity Classification. 139-144 - Helena Gómez-Adorno, Darnes Vilariño, Grigori Sidorov, David Pinto Avendaño:

CICBUAPnlp at SemEval-2016 Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings. 145-148 - Dario Stojanovski, Gjorgji Strezoski, Gjorgji Madjarov, Ivica Dimitrovski

:
Finki at SemEval-2016 Task 4: Deep Learning Architecture for Twitter Sentiment Analysis. 149-154 - Elisavet Palogiannidi, Athanasia Kolovou, Fenia Christopoulou, Filippos Kokkinos, Elias Iosif, Nikolaos Malandrakis, Haris Papageorgiou, Shrikanth S. Narayanan, Alexandros Potamianos:

Tweester at SemEval-2016 Task 4: Sentiment Analysis in Twitter Using Semantic-Affective Model Adaptation. 155-163 - Omar Abdelwahab, Adel Elmaghraby

:
UofL at SemEval-2016 Task 4: Multi Domain word2vec for Twitter Sentiment Classification. 164-170 - Nikolay Karpov, Alexander Porshnev, Kirill Rudakov:

NRU-HSE at SemEval-2016 Task 4: Comparative Analysis of Two Iterative Methods Using Quantification Library. 171-177 - Sebastian Ruder, Parsa Ghaffari, John G. Breslin:

INSIGHT-1 at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification and Quantification. 178-182 - Steven Xu, Huizhi Liang, Timothy Baldwin:

UNIMELB at SemEval-2016 Tasks 4A and 4B: An Ensemble of Neural Networks and a Word2Vec Based Model for Sentiment Classification. 183-189 - Hussam Hamdan:

SentiSys at SemEval-2016 Task 4: Feature-Based System for Sentiment Analysis in Twitter. 190-197 - Victor Martinez Morant, Lluís-F. Hurtado, Ferran Pla:

DSIC-ELIRF at SemEval-2016 Task 4: Message Polarity Classification in Twitter using a Support Vector Machine Approach. 198-201 - Mickael Rouvier, Benoît Favre:

SENSEI-LIF at SemEval-2016 Task 4: Polarity embedding fusion for robust sentiment analysis. 202-208 - Abeed Sarker

, Graciela Gonzalez
:
DiegoLab16 at SemEval-2016 Task 4: Sentiment Analysis in Twitter using Centroids, Clusters, and Sentiment Lexicons. 209-214 - Gerard Briones, Kasun Amarasinghe, Bridget T. McInnes:

VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter. 215-219 - Giuseppe Attardi, Daniele Sartiano

:
UniPI at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification. 220-224 - Jasper Friedrichs:

IIP at SemEval-2016 Task 4: Prioritizing Classes in Ensemble Classification for Sentiment Analysis of Tweets. 225-229 - Uladzimir Sidarenka:

PotTS at SemEval-2016 Task 4: Sentiment Analysis of Twitter Using Character-level Convolutional Neural Networks. 230-237 - Silvio Amir, Ramón Fernandez Astudillo, Wang Ling, Mário J. Silva, Isabel Trancoso:

INESC-ID at SemEval-2016 Task 4-A: Reducing the Problem of Out-of-Embedding Words. 238-242 - Cosmin Florean, Oana Bejenaru, Eduard Apostol, Octavian Ciobanu, Adrian Iftene, Diana Trandabat:

SentimentalITsts at SemEval-2016 Task 4: building a Twitter sentiment analyzer in your backyard. 243-246 - Calin-Cristian Ciubotariu, Marius-Valentin Hrisca, Mihail Gliga, Diana Darabana, Diana Trandabat, Adrian Iftene:

Minions at SemEval-2016 Task 4: or how to build a sentiment analyzer using off-the-shelf resources? 247-250 - Yunchao He, Liang-Chih Yu, Chin-Sheng Yang, K. Robert Lai, Weiyi Liu:

YZU-NLP Team at SemEval-2016 Task 4: Ordinal Sentiment Classification Using a Recurrent Convolutional Network. 251-255 - Yunxiao Zhou, Zhihua Zhang, Man Lan:

ECNU at SemEval-2016 Task 4: An Empirical Investigation of Traditional NLP Features and Word Embedding Features for Sentence-level and Topic-level Sentiment Analysis in Twitter. 256-261 - Alexandra Balahur

:
OPAL at SemEval-2016 Task 4: the Challenge of Porting a Sentiment Analysis System to the "Real" World. 262-265 - Stefan Falk, Andi Rexha, Roman Kern

:
Know-Center at SemEval-2016 Task 5: Using Word Vectors with Typed Dependencies for Opinion Target Expression Extraction. 266-270 - Talaat Khalil, Samhaa R. El-Beltagy:

NileTMRG at SemEval-2016 Task 5: Deep Convolutional Neural Networks for Aspect Category and Sentiment Extraction. 271-276 - Caroline Brun, Julien Perez, Claude Roux:

XRCE at SemEval-2016 Task 5: Feedbacked Ensemble Modeling on Syntactico-Semantic Knowledge for Aspect Based Sentiment Analysis. 277-281 - Zhiqiang Toh, Jian Su

:
NLANGP at SemEval-2016 Task 5: Improving Aspect Based Sentiment Analysis using Neural Network Features. 282-288 - Toshihiko Yanase, Kohsuke Yanai, Misa Sato, Toshinori Miyoshi, Yoshiki Niwa:

bunji at SemEval-2016 Task 5: Neural and Syntactic Models of Entity-Attribute Relationship for Aspect-based Sentiment Analysis. 289-295 - Maryna Chernyshevich:

IHS-RD-Belarus at SemEval-2016 Task 5: Detecting Sentiment Polarity Using the Heatmap of Sentence. 296-300 - Jakub Machacek:

BUTknot at SemEval-2016 Task 5: Supervised Machine Learning with Term Substitution Approach in Aspect Category Detection. 301-305 - Tamara Álvarez-López, Jonathan Juncal-Martínez, Milagros Fernández Gavilanes, Enrique Costa-Montenegro, Francisco Javier González-Castaño:

GTI at SemEval-2016 Task 5: SVM and CRF for Aspect Detection and Unsupervised Aspect-Based Sentiment Analysis. 306-311 - Dionysios Xenos, Panagiotis Theodorakakos, John Pavlopoulos

, Prodromos Malakasiotis, Ion Androutsopoulos
:
AUEB-ABSA at SemEval-2016 Task 5: Ensembles of Classifiers and Embeddings for Aspect Based Sentiment Analysis. 312-317 - Shubham Pateria, Prafulla Choubey:

AKTSKI at SemEval-2016 Task 5: Aspect Based Sentiment Analysis for Consumer Reviews. 318-324 - Vladimir Mayorov, Ivan Andrianov:

MayAnd at SemEval-2016 Task 5: Syntactic and word2vec-based approach to aspect-based polarity detection in Russian. 325-329 - Sebastian Ruder, Parsa Ghaffari, John G. Breslin:

INSIGHT-1 at SemEval-2016 Task 5: Deep Learning for Multilingual Aspect-based Sentiment Analysis. 330-336 - Fatih Samet Çetin, Ezgi Yildirim, Can Özbey, Gülsen Eryigit

:
TGB at SemEval-2016 Task 5: Multi-Lingual Constraint System for Aspect Based Sentiment Analysis. 337-341 - Tomás Hercig, Tomás Brychcín, Lukás Svoboda, Michal Konkol:

UWB at SemEval-2016 Task 5: Aspect Based Sentiment Analysis. 342-349 - Hussam Hamdan:

SentiSys at SemEval-2016 Task 5: Opinion Target Extraction and Sentiment Polarity Detection. 350-355 - Kim Schouten, Flavius Frasincar:

COMMIT at SemEval-2016 Task 5: Sentiment Analysis with Rhetorical Structure Theory. 356-360 - Mengxiao Jiang, Zhihua Zhang, Man Lan:

ECNU at SemEval-2016 Task 5: Extracting Effective Features from Relevant Fragments in Sentence for Aspect-Based Sentiment Analysis in Reviews. 361-366 - Ales Tamchyna, Katerina Veselovská:

UFAL at SemEval-2016 Task 5: Recurrent Neural Networks for Sentence Classification. 367-371 - Olga Vechtomova

, Anni He:
UWaterloo at SemEval-2016 Task 5: Minimally Supervised Approaches to Aspect-Based Sentiment Analysis. 372-377 - Marcelo Dias, Karin Becker:

INF-UFRGS-OPINION-MINING at SemEval-2016 Task 6: Automatic Generation of a Training Corpus for Unsupervised Identification of Stance in Tweets. 378-383 - Wan Wei, Xiao Zhang, Xuqin Liu, Wei Chen, Tengjiao Wang:

pkudblab at SemEval-2016 Task 6 : A Specific Convolutional Neural Network System for Effective Stance Detection. 384-388 - Isabelle Augenstein, Andreas Vlachos

, Kalina Bontcheva:
USFD at SemEval-2016 Task 6: Any-Target Stance Detection on Twitter with Autoencoders. 389-393 - Can Liu, Wen Li, Bradford Demarest, Yue Chen, Sara Couture, Daniel Dakota, Nikita Haduong, Noah Kaufman, Andrew Lamont, Manan Pancholi, Kenneth Steimel, Sandra Kübler

:
IUCL at SemEval-2016 Task 6: An Ensemble Model for Stance Detection in Twitter. 394-400 - Yuki Igarashi, Hiroya Komatsu, Sosuke Kobayashi, Naoaki Okazaki, Kentaro Inui:

Tohoku at SemEval-2016 Task 6: Feature-based Model versus Convolutional Neural Network for Stance Detection. 401-407 - Peter Krejzl, Josef Steinberger:

UWB at SemEval-2016 Task 6: Stance Detection. 408-412 - Prashanth Vijayaraghavan, Ivan Sysoev, Soroush Vosoughi, Deb Roy:

DeepStance at SemEval-2016 Task 6: Detecting Stance in Tweets Using Character and Word-Level CNNs. 413-419 - Amita Misra

, Brian Ecker, Theodore Handleman, Nicolas Hahn, Marilyn A. Walker:
NLDS-UCSC at SemEval-2016 Task 6: A Semi-Supervised Approach to Detecting Stance in Tweets. 420-427 - Michael Wojatzki, Torsten Zesch:

ltl.uni-due at SemEval-2016 Task 6: Stance Detection in Social Media Using Stacked Classifiers. 428-433 - Heba Elfardy, Mona T. Diab:

CU-GWU Perspective at SemEval-2016 Task 6: Ideological Stance Detection in Informal Text. 434-439 - Braja Gopal Patra

, Dipankar Das, Sivaji Bandyopadhyay:
JU_NLP at SemEval-2016 Task 6: Detecting Stance in Tweets using Support Vector Machines. 440-444 - Henrik Bøhler, Petter Asla, Erwin Marsi, Rune Sætre:

IDI$@$NTNU at SemEval-2016 Task 6: Detecting Stance in Tweets Using Shallow Features and GloVe Vectors for Word Representation. 445-450 - Zhihua Zhang, Man Lan:

ECNU at SemEval 2016 Task 6: Relevant or Not? Supportive or Not? A Two-step Learning System for Automatic Detecting Stance in Tweets. 451-457 - Guido Zarrella, Amy Marsh:

MITRE at SemEval-2016 Task 6: Transfer Learning for Stance Detection. 458-463 - Martin Tutek, Ivan Sekulic, Paula Gombar, Ivan Paljak, Filip Culinovic, Filip Boltuzic, Mladen Karan, Domagoj Alagic, Jan Snajder:

TakeLab at SemEval-2016 Task 6: Stance Classification in Tweets Using a Genetic Algorithm Based Ensemble. 464-468 - Amal Htait, Sébastien Fournier, Patrice Bellot:

LSIS at SemEval-2016 Task 7: Using Web Search Engines for English and Arabic Unsupervised Sentiment Intensity Prediction. 469-473 - Eshrag Refaee

, Verena Rieser:
iLab-Edinburgh at SemEval-2016 Task 7: A Hybrid Approach for Determining Sentiment Intensity of Arabic Twitter Phrases. 474-480 - Ladislav Lenc, Pavel Král, Václav Rajtmajer:

UWB at SemEval-2016 Task 7: Novel Method for Automatic Sentiment Intensity Determination. 481-485 - Samhaa R. El-Beltagy:

NileTMRG at SemEval-2016 Task 7: Deriving Prior Polarities for Arabic Sentiment Terms. 486-490 - Feixiang Wang, Zhihua Zhang, Man Lan:

ECNU at SemEval-2016 Task 7: An Enhanced Supervised Learning Method for Lexicon Sentiment Intensity Ranking. 491-496 - Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, German Rigau

, Janyce Wiebe:
SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual and Cross-Lingual Evaluation. 497-511 - Eneko Agirre, Aitor Gonzalez-Agirre, Iñigo Lopez-Gazpio, Montse Maritxalar

, German Rigau
, Larraitz Uria
:
SemEval-2016 Task 2: Interpretable Semantic Textual Similarity. 512-524 - Preslav Nakov, Lluís Màrquez, Alessandro Moschitti, Walid Magdy

, Hamdy Mubarak, Abed Alhakim Freihat, James R. Glass, Bilal Randeree:
SemEval-2016 Task 3: Community Question Answering. 525-545 - Nathan Schneider, Dirk Hovy

, Anders Johannsen, Marine Carpuat:
SemEval-2016 Task 10: Detecting Minimal Semantic Units and their Meanings (DiMSUM). 546-559 - Gustavo Paetzold, Lucia Specia:

SemEval 2016 Task 11: Complex Word Identification. 560-569 - Duygu Ataman, José Guilherme Camargo de Souza

, Marco Turchi, Matteo Negri
:
FBK HLT-MT at SemEval-2016 Task 1: Cross-lingual Semantic Similarity Measurement Using Quality Estimation Features and Compositional Bilingual Word Embeddings. 570-576 - Sam Henry, Allison Sands:

VRep at SemEval-2016 Task 1 and Task 2: A System for Interpretable Semantic Similarity. 577-583 - Peng Li, Heng Huang:

UTA DLNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation. 584-587 - Tomás Brychcín, Lukás Svoboda:

UWB at SemEval-2016 Task 1: Semantic Textual Similarity using Lexical, Syntactic, and Semantic Information. 588-594 - Matthias Liebeck, Philipp Pollack, Pashutan Modaresi, Stefan Conrad:

HHU at SemEval-2016 Task 1: Multiple Approaches to Measuring Semantic Textual Similarity. 595-601 - Barbara Rychalska, Katarzyna Pakulska, Krystyna Chodorowska, Wojciech Walczak, Piotr Andruszkiewicz:

Samsung Poland NLP Team at SemEval-2016 Task 1: Necessity for diversity; combining recursive autoencoders, WordNet and ensemble methods to measure semantic similarity. 602-608 - Ahmet Aker, Frédéric Blain

, Andrés Duque, Marina Fomicheva, Jurica Seva, Kashif Shah, Daniel Beck:
USFD at SemEval-2016 Task 1: Putting different State-of-the-Arts into a Box. 609-613 - Piotr Przybyla, Nhung T. H. Nguyen, Matthew Shardlow, Georgios Kontonatsios

, Sophia Ananiadou:
NaCTeM at SemEval-2016 Task 1: Inferring sentence-level semantic similarity from an ensemble of complementary lexical and sentence-level features. 614-620 - Junfeng Tian, Man Lan:

ECNU at SemEval-2016 Task 1: Leveraging Word Embedding From Macro and Micro Views to Boost Performance for Semantic Textual Similarity. 621-627 - Liling Tan, Carolina Scarton, Lucia Specia, Josef van Genabith:

SAARSHEFF at SemEval-2016 Task 1: Semantic Textual Similarity with Machine Translation Evaluation Metrics and (eXtreme) Boosted Tree Ensembles. 628-633 - Hanna Béchara, Rohit Gupta, Liling Tan, Constantin Orasan, Ruslan Mitkov, Josef van Genabith:

WOLVESAAR at SemEval-2016 Task 1: Replicating the Success of Monolingual Word Alignment and Neural Embeddings for Semantic Textual Similarity. 634-639 - Rajendra Banjade, Nabin Maharjan, Dipesh Gautam, Vasile Rus:

DTSim at SemEval-2016 Task 1: Semantic Similarity Model Including Multi-Level Alignment and Vector-Based Compositional Semantics. 640-644 - Cheng Fu, Bo An, Xianpei Han, Le Sun:

ISCAS_NLP at SemEval-2016 Task 1: Sentence Similarity Based on Support Vector Regression using Multiple Features. 645-649 - Md. Arafat Sultan, Steven Bethard, Tamara Sumner:

DLS$@$CU at SemEval-2016 Task 1: Supervised Models of Sentence Similarity. 650-655 - Chris Hokamp, Piyush Arora:

DCU-SEManiacs at SemEval-2016 Task 1: Synthetic Paragram Embeddings for Semantic Textual Similarity. 656-662 - Hanan Aldarmaki, Mona T. Diab:

GWU NLP at SemEval-2016 Shared Task 1: Matrix Factorization for Crosslingual STS. 663-667 - Chi-kiu Lo

, Cyril Goutte, Michel Simard:
CNRC at SemEval-2016 Task 1: Experiments in Crosslingual Semantic Textual Similarity. 668-673 - Naveed Afzal, Yanshan Wang

, Hongfang Liu:
MayoNLP at SemEval-2016 Task 1: Semantic Textual Similarity based on Lexical Semantic Net and Deep Learning Semantic Model. 674-679 - Harish Tayyar Madabushi

, Mark Buhagiar, Mark Lee:
UoB-UK at SemEval-2016 Task 1: A Flexible and Extendable System for Semantic Text Similarity using Types, Surprise and Phrase Linking. 680-685 - Hao Wu, Heyan Huang, Wenpeng Lu

:
BIT at SemEval-2016 Task 1: Sentence Similarity Based on Alignments and Vector with the Weight of Information Content. 686-690 - Hideo Itoh:

RICOH at SemEval-2016 Task 1: IR-based Semantic Textual Similarity Estimation. 691-695 - Maryna Beliuha, Maryna Chernyshevich:

IHS-RD-Belarus at SemEval-2016 Task 1: Multistage Approach for Measuring Semantic Similarity. 696-701 - Sandip Sarkar, Dipankar Das, Partha Pakray, Alexander F. Gelbukh

:
JUNITMZ at SemEval-2016 Task 1: Identifying Semantic Similarity Using Levenshtein Ratio. 702-705 - Barathi Ganesh H. B., M. Anand Kumar

, K. P. Soman:
Amrita_CEN at SemEval-2016 Task 1: Semantic Relation from Word Embeddings in Higher Dimension. 706-711 - John Philip McCrae, Kartik Asooja, Nitish Aggarwal, Paul Buitelaar:

NUIG-UNLP at SemEval-2016 Task 1: Soft Alignment and Deep Learning for Semantic Textual Similarity. 712-717 - Kolawole Adebayo, Luigi Di Caro, Guido Boella:

NORMAS at SemEval-2016 Task 1: SEMSIM: A Multi-Feature Approach to Semantic Text Similarity. 718-725 - Oscar William Lightgow Serrano, Iván Vladimir Meza Ruíz

, Albert Manuel Orozco Camacho, Jorge García Flores, Davide Buscaldi:
LIPN-IIMAS at SemEval-2016 Task 1: Random Forest Regression Experiments on Align-and-Differentiate and Word Embeddings penalizing strategies. 726-731 - Milton King, Waseem Gharbieh, SoHyun Park, Paul Cook:

UNBNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation. 732-735 - Asli Eyecioglu, Bill Keller

:
ASOBEK at SemEval-2016 Task 1: Sentence Representation with Character N-gram Embeddings for Semantic Textual Similarity. 736-740 - Peter Potash, William Boag, Alexey Romanov, Vasili Ramanishka, Anna Rumshisky:

SimiHawk at SemEval-2016 Task 1: A Deep Ensemble System for Semantic Textual Similarity. 741-748 - Sergio Jimenez:

SERGIOJIMENEZ at SemEval-2016 Task 1: Effectively Combining Paraphrase Database, String Matching, WordNet, and Word Embedding for Semantic Textual Similarity. 749-757 - Ergun Biçici:

RTM at SemEval-2016 Task 1: Predicting Semantic Similarity with Referential Translation Machines and Related Statistics. - Jie Mei, Aminul Islam, Evangelos E. Milios:

DalGTM at SemEval-2016 Task 1: Importance-Aware Compositional Approach to Short Text Similarity. 765-770 - Iñigo Lopez-Gazpio, Eneko Agirre

, Montse Maritxalar
:
iUBC at SemEval-2016 Task 2: RNNs and LSTMs for interpretable STS. 771-776 - Ping Tan, Karin Verspoor

, Tim Miller:
Rev at SemEval-2016 Task 2: Aligning Chunks by Lexical, Part of Speech and Semantic Equivalence. 777-782 - Simone Magnolini

, Anna Feltracco, Bernardo Magnini:
FBK-HLT-NLP at SemEval-2016 Task 2: A Multitask, Deep Learning Approach for Interpretable Semantic Textual Similarity. 783-789 - Lavanya Sita Tekumalla, Sharmistha Jat:

IISCNLP at SemEval-2016 Task 2: Interpretable STS with ILP based Multiple Chunk Aligner. 790-795 - Rodolfo Delmonte:

VENSESEVAL at Semeval-2016 Task 2 iSTS - with a full-fledged rule-based approach. 796-802 - Miloslav Konopík, Ondrej Prazák, David Steinberger, Tomás Brychcín:

UWB at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity with Distributional Semantics for Chunks. 803-808 - Rajendra Banjade, Nabin Maharjan, Nobal Bikram Niraula, Vasile Rus:

DTSim at SemEval-2016 Task 2: Interpreting Similarity of Texts Based on Automated Chunking, Chunk Alignment and Semantic Relation Prediction. 809-813 - Marc Franco-Salvador, Sudipta Kar, Thamar Solorio

, Paolo Rosso:
UH-PRHLT at SemEval-2016 Task 3: Combining Lexical and Semantic-based Features for Community Question Answering. 814-821 - Ahmed Magooda

, Amr Gomaa, Ashraf Y. Mahgoub, Hany Ahmed, Mohsen A. Rashwan, Hazem M. Raafat, Eslam Kamal, Ahmad A. Al Sallab:
RDI_Team at SemEval-2016 Task 3: RDI Unsupervised Framework for Text Ranking. 822-827 - Mitra Mohtarami, Yonatan Belinkov, Wei-Ning Hsu, Yu Zhang, Tao Lei, Kfir Bar

, Scott Cyphers, James R. Glass:
SLS at SemEval-2016 Task 3: Neural-based Approaches for Ranking in Community Question Answering. 828-835 - Tsvetomila Mihaylova

, Pepa Gencheva, Martin Boyanov, Ivana Yovcheva, Todor Mihaylov, Momchil Hardalov
, Yasen Kiprov, Daniel Balchev, Ivan Koychev, Preslav Nakov, Ivelina Nikolova, Galia Angelova:
SUper Team at SemEval-2016 Task 3: Building a Feature-Rich System for Community Question Answering. 836-843 - Daniel Balchev, Yasen Kiprov, Ivan Koychev, Preslav Nakov:

PMI-cool at SemEval-2016 Task 3: Experiments with PMI and Goodness Polarity Lexicons for Community Question Answering. 844-850 - Timothy Baldwin, Huizhi Liang, Bahar Salehi, Doris Hoogeveen, Yitong Li, Long Duong:

UniMelb at SemEval-2016 Task 3: Identifying Similar Questions by combining a CNN with String Similarity Measures. 851-856 - Yunfang Wu, Minghua Zhang:

ICL00 at SemEval-2016 Task 3: Translation-Based Method for CQA System. 857-860 - Hujie Wang, Pascal Poupart:

Overfitting at SemEval-2016 Task 3: Detecting Semantically Similar Questions in Community Question Answering Forums with Word Embeddings. 861-865 - Rana Malhas, Marwan Torki

, Tamer Elsayed
:
QU-IR at SemEval 2016 Task 3: Learning to Rank on Arabic Community Question Answering Forums with Word Embedding. 866-871 - GuoShun Wu, Man Lan:

ECNU at SemEval-2016 Task 3: Exploring Traditional Method and Deep Learning Method for Question Retrieval and Answer Ranking in Community Question Answering. 872-878 - Todor Mihaylov, Preslav Nakov:

SemanticZ at SemEval-2016 Task 3: Ranking Relevant Answers in Community Question Answering Using Semantic Similarity Based on Fine-tuned Word Embeddings. 879-886 - Francisco Guzmán, Preslav Nakov, Lluís Màrquez:

MTE-NN at SemEval-2016 Task 3: Can Machine Translation Evaluation Help Community Question Answering? 887-895 - Alberto Barrón-Cedeño, Giovanni Da San Martino, Shafiq R. Joty, Alessandro Moschitti, Fahad Al-Obaidli, Salvatore Romeo, Kateryna Tymoshenko, Antonio Uva:

ConvKN at SemEval-2016 Task 3: Answer and Question Selection for Question Answering on Arabic and English Fora. 896-903 - Chang e Jia:

ITNLP-AiKF at SemEval-2016 Task 3 a quesiton answering system using community QA repository. 904-909 - Silvio Cordeiro, Carlos Ramisch, Aline Villavicencio:

UFRGS&LIF at SemEval-2016 Task 10: Rule-Based MWE Identification and Predominant-Supersense Tagging. 910-917 - Xin Tang, Fei Li, Dong-Hong Ji:

WHUNlp at SemEval-2016 Task DiMSUM: A Pilot Study in Detecting Minimal Semantic Units and their Meanings using Supervised Models. 918-924 - Jari Björne, Tapio Salakoski:

UTU at SemEval-2016 Task 10: Binary Classification for Expression Detection (BCED). 925-930 - Mohammad Javad Hosseini, Noah A. Smith, Su-In Lee:

UW-CSE at SemEval-2016 Task 10: Detecting Multiword Expressions and Supersenses using Double-Chained Conditional Random Fields. 931-936 - Angelika Kirilin, Felix Krauss, Yannick Versley:

ICL-HD at SemEval-2016 Task 10: Improving the Detection of Minimal Semantic Units and their Meanings with an Ontology and Word Embeddings. 937-945 - Andreas Scherbakov, Ekaterina Vylomova, Fei Liu, Timothy Baldwin:

VectorWeavers at SemEval-2016 Task 10: From Incremental Meaning to Semantic Unit (phrase by phrase). 946-952 - Krzysztof Wróbel

:
PLUJAGH at SemEval-2016 Task 11: Simple System for Complex Word Identification. 953-957 - José Manuel Martínez Martínez, Liling Tan:

USAAR at SemEval-2016 Task 11: Complex Word Identification with Sense Entropy and Sentence Perplexity. 958-962 - Gillin Nat:

Sensible at SemEval-2016 Task 11: Neural Nonsense Mangled in Ensemble Mess. 963-968 - Gustavo Paetzold, Lucia Specia:

SV000gg at SemEval-2016 Task 11: Heavy Gauge Complex Word Identification with System Voting. 969-974 - Julian Brooke, Alexandra L. Uitdenbogerd, Timothy Baldwin:

Melbourne at SemEval 2016 Task 11: Classifying Type-level Word Complexity using Random Forests with Corpus and Word List Features. 975-981 - Elnaz Davoodi, Leila Kosseim:

CLaC at SemEval-2016 Task 11: Exploring linguistic and psycho-linguistic Features for Complex Word Identification. 982-985 - Niloy Mukherjee, Braja Gopal Patra

, Dipankar Das, Sivaji Bandyopadhyay:
JU_NLP at SemEval-2016 Task 11: Identifying Complex Words in a Sentence. 986-990 - Shervin Malmasi, Marcos Zampieri:

MAZA at SemEval-2016 Task 11: Detecting Lexical Complexity Using a Decision Stump Meta-Classifier. 991-995 - Shervin Malmasi, Mark Dras

, Marcos Zampieri:
LTG at SemEval-2016 Task 11: Complex Word Identification with Classifier Ensembles. 996-1000 - Marcos Zampieri, Liling Tan, Josef van Genabith:

MacSaar at SemEval-2016 Task 11: Zipfian and Character Features for ComplexWord Identification. 1001-1005 - Prafulla Choubey, Shubham Pateria:

Garuda & Bhasha at SemEval-2016 Task 11: Complex Word Identification Using Aggregated Learning Models. 1006-1010 - Francesco Ronzano, Ahmed AbuRa'ed, Luis Espinosa Anke, Horacio Saggion:

TALN at SemEval-2016 Task 11: Modelling Complex Words by Contextual, Lexical and Semantic Features. 1011-1016 - Ashish Palakurthi, Radhika Mamidi

:
IIIT at SemEval-2016 Task 11: Complex Word Identification using Nearest Centroid Classification. 1017-1021 - Sanjay S. P., Anand Kumar M, K. P. Soman:

AmritaCEN at SemEval-2016 Task 11: Complex Word Identification using Word Embedding. 1022-1027 - Joachim Bingel

, Natalie Schluter, Héctor Martínez Alonso:
CoastalCPH at SemEval-2016 Task 11: The importance of designing your Neural Networks right. 1028-1033 - Maury Quijada, Julie Medero

:
HMC at SemEval-2016 Task 11: Identifying Complex Words Using Depth-limited Decision Trees. 1034-1037 - Michal Konkol:

UWB at SemEval-2016 Task 11: Exploring Features for Complex Word Identification. 1038-1041 - Onur Kuru:

AI-KU at SemEval-2016 Task 11: Word Embeddings and Substring Features for Complex Word Identification. 1042-1046 - David Kauchak:

Pomona at SemEval-2016 Task 11: Predicting Word Complexity Based on Corpus Frequency. 1047-1051 - Steven Bethard, Guergana Savova, Wei-Te Chen, Leon Derczynski, James Pustejovsky, Marc Verhagen:

SemEval-2016 Task 12: Clinical TempEval. - Jonathan May:

SemEval-2016 Task 8: Meaning Representation Parsing. 1063-1073 - Wanxiang Che, Yanqiu Shao, Ting Liu, Yu Ding:

SemEval-2016 Task 9: Chinese Semantic Dependency Parsing. 1074-1080 - Georgeta Bordea, Els Lefever, Paul Buitelaar:

SemEval-2016 Task 13: Taxonomy Extraction Evaluation (TExEval-2). 1081-1091 - David Jurgens, Mohammad Taher Pilehvar:

SemEval-2016 Task 14: Semantic Taxonomy Enrichment. 1092-1102 - Hua He, John Wieting, Kevin Gimpel, Jinfeng Rao, Jimmy Lin:

UMD-TTIC-UW at SemEval-2016 Task 1: Attention-Based Multi-Perspective Convolutional Neural Networks for Textual Similarity Measurement. 1103-1108 - Mishal Kazmi, Peter Schüller

:
Inspire at SemEval-2016 Task 2: Interpretable Semantic Textual Similarity Alignment based on Answer Set Programming. 1109-1115 - Simone Filice, Danilo Croce, Alessandro Moschitti, Roberto Basili:

KeLP at SemEval-2016 Task 3: Learning Semantic Relations between Questions and Answers. 1116-1123 - Jan Deriu

, Maurice Gonzenbach, Fatih Uzdilli, Aurélien Lucchi
, Valeria De Luca, Martin Jaggi
:
SwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of Convolutional Neural Networks with Distant Supervision. 1124-1128 - Ayush Kumar, Sarah Kohail

, Amit Kumar
, Asif Ekbal, Chris Biemann:
IIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain Dependency and Distributional Semantics Features for Aspect Based Sentiment Analysis. 1129-1135 - Julien Tourille, Olivier Ferret, Aurélie Névéol, Xavier Tannier:

LIMSI-COT at SemEval-2016 Task 12: Temporal relation identification using a pipeline of classifiers. 1136-1142 - Guntis Barzdins, Didzis Gosko:

RIGA at SemEval-2016 Task 8: Impact of Smatch Extensions and Character-Level Neural Translation on AMR Parsing Accuracy. 1143-1147 - Alastair Butler:

DynamicPower at SemEval-2016 Task 8: Processing syntactic parse trees with a Dynamic Semantics core. 1148-1153 - Yevgeniy Puzikov, Daisuke Kawahara, Sadao Kurohashi:

M2L at SemEval-2016 Task 8: AMR Parsing with Neural Networks. 1154-1159 - Lauritz Brandt, David Grimm, Mengfei Zhou, Yannick Versley:

ICL-HD at SemEval-2016 Task 8: Meaning Representation Parsing - Augmenting AMR Parsing with a Preposition Semantic Role Labeling Neural Network. 1160-1166 - James Goodman, Andreas Vlachos

, Jason Naradowsky:
UCL+Sheffield at SemEval-2016 Task 8: Imitation learning for AMR parsing with an alpha-bound. 1167-1172 - Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng Ji, Nianwen Xue:

CAMR at SemEval-2016 Task 8: An Extended Transition-based AMR Parser. 1173-1178 - Johannes Bjerva

, Johan Bos, Hessel Haagsma:
The Meaning Factory at SemEval-2016 Task 8: Producing AMRs with Boxer. 1179-1184 - Xiaochang Peng, Daniel Gildea:

UofR at SemEval-2016 Task 8: Learning Synchronous Hyperedge Replacement Grammar for AMR Parsing. 1185-1189 - Sudha Rao, Yogarshi Vyas, Hal Daumé III, Philip Resnik:

CLIP$@$UMD at SemEval-2016 Task 8: Parser for Abstract Meaning Representation using Learning to Search. 1190-1196 - William Foland, James H. Martin

:
CU-NLP at SemEval-2016 Task 8: AMR Parsing using LSTM-based Recurrent Neural Networks. 1197-1201 - Jeffrey Flanigan

, Chris Dyer, Noah A. Smith, Jaime G. Carbonell:
CMU at SemEval-2016 Task 8: Graph-based AMR Parsing with Infinite Ramp Loss. 1202-1206 - Artsiom Artsymenia, Palina Dounar, Maria Yermakovich:

IHS-RD-Belarus at SemEval-2016 Task 9: Transition-based Chinese Semantic Dependency Parsing with Online Reordering and Bootstrapping. 1207-1211 - Lifeng Jin, Manjuan Duan, William Schuler:

OCLSP at SemEval-2016 Task 9: Multilayered LSTM as a Neural Semantic Dependency Parser. 1212-1217 - Manjuan Duan, Lifeng Jin, William Schuler:

OSU_CHGCG at SemEval-2016 Task 9 : Chinese Semantic Dependency Parsing with Generalized Categorial Grammar. 1218-1224 - Cyril Grouin, Véronique Moriceau:

LIMSI at SemEval-2016 Task 12: machine-learning and temporal information to identify clinical events and time expressions. 1225-1230 - Sarath P. R., Manikandan R, Yoshiki Niwa:

Hitachi at SemEval-2016 Task 12: A Hybrid Approach for Temporal Information Extraction from Clinical Notes. 1231-1236 - Veera Raghavendra Chikka:

CDE-IIITH at SemEval-2016 Task 12: Extraction of Temporal Information from Clinical documents using Machine Learning techniques. 1237-1240 - Tommaso Caselli, Roser Morante:

VUACLTL at SemEval 2016 Task 12: A CRF Pipeline to Clinical TempEval. 1241-1247 - Arman Cohan

, Kevin Meurer, Nazli Goharian:
GUIR at SemEval-2016 task 12: Temporal Information Processing for Clinical Narratives. 1248-1255 - Abdulrahman Al Abdulsalam, Sumithra Velupillai, Stéphane M. Meystre:

UtahBMI at SemEval-2016 Task 12: Extracting Temporal Information from Clinical Text. 1256-1262 - Márcia Barros

, Andre Lamurias, Gonçalo Figueiró, Marta Antunes, Joana Teixeira, Alexandre Pinheiro, Francisco M. Couto:
ULISBOA at SemEval-2016 Task 12: Extraction of temporal expressions, clinical events and relations using IBEnt. 1263-1267 - Peng Li, Heng Huang:

UTA DLNLP at SemEval-2016 Task 12: Deep Learning Based Natural Language Processing System for Clinical Information Identification from Clinical Notes and Pathology Reports. 1268-1273 - Jason Alan Fries

:
Brundlefly at SemEval-2016 Task 12: Recurrent Neural Networks vs. Joint Inference for Clinical Temporal Information Extraction. 1274-1279 - Artuur Leeuwenberg

, Marie-Francine Moens:
KULeuven-LIIR at SemEval 2016 Task 12: Detecting Narrative Containment in Clinical Records. 1280-1285 - Charlotte Hansart, Damien De Meyere, Patrick Watrin, André Bittar, Cédrick Fairon:

CENTAL at SemEval-2016 Task 12: a linguistically fed CRF model for medical and temporal information extraction. 1286-1291 - Hee-Jin Lee, Hua Xu, Jingqi Wang, Yaoyun Zhang, Sungrim Moon, Jun Xu, Yonghui Wu:

UTHealth at SemEval-2016 Task 12: an End-to-End System for Temporal Information Extraction from Clinical Notes. 1292-1297 - Joel Pocostales:

NUIG-UNLP at SemEval-2016 Task 13: A Simple Word Embedding-based Approach for Taxonomy Extraction. 1298-1302 - Liling Tan, Francis Bond

, Josef van Genabith:
USAAR at SemEval-2016 Task 13: Hyponym Endocentricity. 1303-1309 - Promita Maitra, Dipankar Das:

JUNLP at SemEval-2016 Task 13: A Language Independent Approach for Hypernym Identification. 1310-1314 - Guillaume Cleuziou, José G. Moreno:

QASSIT at SemEval-2016 Task 13: On the integration of Semantic Vectors in Pretopological Spaces for Lexical Taxonomy Acquisition. 1315-1319 - Alexander Panchenko, Stefano Faralli

, Eugen Ruppert, Steffen Remus, Hubert Naets, Cédrick Fairon, Simone Paolo Ponzetto, Chris Biemann:
TAXI at SemEval-2016 Task 13: a Taxonomy Induction Method based on Lexico-Syntactic Patterns, Substrings and Focused Crawling. 1320-1327 - Ted Pedersen:

Duluth at SemEval 2016 Task 14: Extending Gloss Overlaps to Enrich Semantic Taxonomies. 1328-1331 - Luis Espinosa Anke, Francesco Ronzano, Horacio Saggion:

TALN at SemEval-2016 Task 14: Semantic Taxonomy Enrichment Via Sense-Based Embeddings. 1332-1336 - Michael Sejr Schlichtkrull, Héctor Martínez Alonso:

MSejrKu at SemEval-2016 Task 14: Taxonomy Enrichment by Evidence Ranking. 1337-1341 - Hristo Tanev, Agata Rotondi:

Deftor at SemEval-2016 Task 14: Taxonomy enrichment using definition vectors. 1342-1345 - Jon Rusert, Ted Pedersen:

UMNDuluth at SemEval-2016 Task 14: WordNet's Missing Lemmas. 1346-1350 - Bridget T. McInnes:

VCU at Semeval-2016 Task 14: Evaluating definitional-based similarity measure for semantic taxonomy enrichment. 1351-1355

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














