default search action
SemEval@NAACL-HLT 2016: San Diego, California, USA
- Steven Bethard, Daniel M. Cer, Marine Carpuat, David Jurgens, Preslav Nakov, Torsten Zesch:
Proceedings of the 10th International Workshop on Semantic Evaluation, SemEval@NAACL-HLT 2016, San Diego, CA, USA, June 16-17, 2016. The Association for Computer Linguistics 2016, ISBN 978-1-941643-95-2 - Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, Veselin Stoyanov:
SemEval-2016 Task 4: Sentiment Analysis in Twitter. 1-18 - Maria Pontiki, Dimitris Galanis, Haris Papageorgiou, Ion Androutsopoulos, Suresh Manandhar, Mohammad Al-Smadi, Mahmoud Al-Ayyoub, Yanyan Zhao, Bing Qin, Orphée De Clercq, Véronique Hoste, Marianna Apidianaki, Xavier Tannier, Natalia V. Loukachevitch, Evgeniy V. Kotelnikov, Núria Bel, Salud María Jiménez-Zafra, Gülsen Eryigit:
SemEval-2016 Task 5: Aspect Based Sentiment Analysis. 19-30 - Saif M. Mohammad, Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu, Colin Cherry:
SemEval-2016 Task 6: Detecting Stance in Tweets. 31-41 - Svetlana Kiritchenko, Saif M. Mohammad, Mohammad Salameh:
SemEval-2016 Task 7: Determining Sentiment Intensity of English and Arabic Phrases. 42-51 - Mahmoud Nabil, Amir F. Atiya, Mohamed Aly:
CUFE at SemEval-2016 Task 4: A Gated Recurrent Model for Sentiment Classification. 52-57 - Giovanni Da San Martino, Wei Gao, Fabrizio Sebastiani:
QCRI at SemEval-2016 Task 4: Probabilistic Methods for Binary and Ordinal Quantification. 58-63 - Stefan Räbiger, Mishal Kazmi, Yücel Saygin, Peter Schüller, Myra Spiliopoulou:
SteM at SemEval-2016 Task 4: Applying Active Learning to Improve Sentiment Classification. 64-70 - Zhengchen Zhang, Chen Zhang, Fuxiang Wu, Dong-Yan Huang, Weisi Lin, Minghui Dong:
I2RNTU at SemEval-2016 Task 4: Classifier Fusion for Polarity Classification in Twitter. 71-78 - David Vilares, Yerai Doval, Miguel A. Alonso, Carlos Gómez-Rodríguez:
LyS at SemEval-2016 Task 4: Exploiting Neural Activation Values for Twitter Sentiment Classification and Quantification. 79-84 - Georgios Balikas, Massih-Reza Amini:
TwiSE at SemEval-2016 Task 4: Twitter Sentiment Classification. 85-91 - Andrea Esuli:
ISTI-CNR at SemEval-2016 Task 4: Quantification on an Ordinal Scale. 92-95 - Stavros Giorgis, Apostolos Rousas, John Pavlopoulos, Prodromos Malakasiotis, Ion Androutsopoulos:
aueb.twitter.sentiment at SemEval-2016 Task 4: A Weighted Ensemble of SVMs for Twitter Sentiment Analysis. 96-99 - Vikrant Yadav:
thecerealkiller at SemEval-2016 Task 4: Deep Learning based System for Classifying Sentiment of Tweets on Two Point Scale. 100-102 - Brage Ekroll Jahren, Valerij Fredriksen, Björn Gambäck, Lars Bungum:
NTNUSentEval at SemEval-2016 Task 4: Combining General Classifiers for Fast Twitter Sentiment Analysis. 103-108 - Esteban Castillo, Ofelia Cervantes, Darnes Vilariño, David Báez:
UDLAP at SemEval-2016 Task 4: Sentiment Quantification Using a Graph Based Representation. 109-114 - Jonathan Juncal-Martínez, Tamara Álvarez-López, Milagros Fernández Gavilanes, Enrique Costa-Montenegro, Francisco Javier González-Castaño:
GTI at SemEval-2016 Task 4: Training a Naive Bayes Classifier using Features of an Unsupervised System. 115-119 - Steven Du, Xi Zhang:
Aicyber at SemEval-2016 Task 4: i-vector based sentence representation. 120-125 - Mateusz Lango, Dariusz Brzezinski, Jerzy Stefanowski:
PUT at SemEval-2016 Task 4: The ABC of Twitter Sentiment Analysis. 126-132 - Vittoria Cozza, Marinella Petrocchi:
mib at SemEval-2016 Task 4a: Exploiting lexicon based features for Sentiment Analysis in Twitter. 133-138 - Hang Gao, Tim Oates:
MDSENT at SemEval-2016 Task 4: A Supervised System for Message Polarity Classification. 139-144 - Helena Gómez-Adorno, Darnes Vilariño, Grigori Sidorov, David Pinto Avendaño:
CICBUAPnlp at SemEval-2016 Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings. 145-148 - Dario Stojanovski, Gjorgji Strezoski, Gjorgji Madjarov, Ivica Dimitrovski:
Finki at SemEval-2016 Task 4: Deep Learning Architecture for Twitter Sentiment Analysis. 149-154 - Elisavet Palogiannidi, Athanasia Kolovou, Fenia Christopoulou, Filippos Kokkinos, Elias Iosif, Nikolaos Malandrakis, Haris Papageorgiou, Shrikanth S. Narayanan, Alexandros Potamianos:
Tweester at SemEval-2016 Task 4: Sentiment Analysis in Twitter Using Semantic-Affective Model Adaptation. 155-163 - Omar Abdelwahab, Adel Elmaghraby:
UofL at SemEval-2016 Task 4: Multi Domain word2vec for Twitter Sentiment Classification. 164-170 - Nikolay Karpov, Alexander Porshnev, Kirill Rudakov:
NRU-HSE at SemEval-2016 Task 4: Comparative Analysis of Two Iterative Methods Using Quantification Library. 171-177 - Sebastian Ruder, Parsa Ghaffari, John G. Breslin:
INSIGHT-1 at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification and Quantification. 178-182 - Steven Xu, Huizhi Liang, Timothy Baldwin:
UNIMELB at SemEval-2016 Tasks 4A and 4B: An Ensemble of Neural Networks and a Word2Vec Based Model for Sentiment Classification. 183-189 - Hussam Hamdan:
SentiSys at SemEval-2016 Task 4: Feature-Based System for Sentiment Analysis in Twitter. 190-197 - Victor Martinez Morant, Lluís-F. Hurtado, Ferran Pla:
DSIC-ELIRF at SemEval-2016 Task 4: Message Polarity Classification in Twitter using a Support Vector Machine Approach. 198-201 - Mickael Rouvier, Benoît Favre:
SENSEI-LIF at SemEval-2016 Task 4: Polarity embedding fusion for robust sentiment analysis. 202-208 - Abeed Sarker, Graciela Gonzalez:
DiegoLab16 at SemEval-2016 Task 4: Sentiment Analysis in Twitter using Centroids, Clusters, and Sentiment Lexicons. 209-214 - Gerard Briones, Kasun Amarasinghe, Bridget T. McInnes:
VCU-TSA at Semeval-2016 Task 4: Sentiment Analysis in Twitter. 215-219 - Giuseppe Attardi, Daniele Sartiano:
UniPI at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification. 220-224 - Jasper Friedrichs:
IIP at SemEval-2016 Task 4: Prioritizing Classes in Ensemble Classification for Sentiment Analysis of Tweets. 225-229 - Uladzimir Sidarenka:
PotTS at SemEval-2016 Task 4: Sentiment Analysis of Twitter Using Character-level Convolutional Neural Networks. 230-237 - Silvio Amir, Ramón Fernandez Astudillo, Wang Ling, Mário J. Silva, Isabel Trancoso:
INESC-ID at SemEval-2016 Task 4-A: Reducing the Problem of Out-of-Embedding Words. 238-242 - Cosmin Florean, Oana Bejenaru, Eduard Apostol, Octavian Ciobanu, Adrian Iftene, Diana Trandabat:
SentimentalITsts at SemEval-2016 Task 4: building a Twitter sentiment analyzer in your backyard. 243-246 - Calin-Cristian Ciubotariu, Marius-Valentin Hrisca, Mihail Gliga, Diana Darabana, Diana Trandabat, Adrian Iftene:
Minions at SemEval-2016 Task 4: or how to build a sentiment analyzer using off-the-shelf resources? 247-250 - Yunchao He, Liang-Chih Yu, Chin-Sheng Yang, K. Robert Lai, Weiyi Liu:
YZU-NLP Team at SemEval-2016 Task 4: Ordinal Sentiment Classification Using a Recurrent Convolutional Network. 251-255 - Yunxiao Zhou, Zhihua Zhang, Man Lan:
ECNU at SemEval-2016 Task 4: An Empirical Investigation of Traditional NLP Features and Word Embedding Features for Sentence-level and Topic-level Sentiment Analysis in Twitter. 256-261 - Alexandra Balahur:
OPAL at SemEval-2016 Task 4: the Challenge of Porting a Sentiment Analysis System to the "Real" World. 262-265 - Stefan Falk, Andi Rexha, Roman Kern:
Know-Center at SemEval-2016 Task 5: Using Word Vectors with Typed Dependencies for Opinion Target Expression Extraction. 266-270 - Talaat Khalil, Samhaa R. El-Beltagy:
NileTMRG at SemEval-2016 Task 5: Deep Convolutional Neural Networks for Aspect Category and Sentiment Extraction. 271-276 - Caroline Brun, Julien Perez, Claude Roux:
XRCE at SemEval-2016 Task 5: Feedbacked Ensemble Modeling on Syntactico-Semantic Knowledge for Aspect Based Sentiment Analysis. 277-281 - Zhiqiang Toh, Jian Su:
NLANGP at SemEval-2016 Task 5: Improving Aspect Based Sentiment Analysis using Neural Network Features. 282-288 - Toshihiko Yanase, Kohsuke Yanai, Misa Sato, Toshinori Miyoshi, Yoshiki Niwa:
bunji at SemEval-2016 Task 5: Neural and Syntactic Models of Entity-Attribute Relationship for Aspect-based Sentiment Analysis. 289-295 - Maryna Chernyshevich:
IHS-RD-Belarus at SemEval-2016 Task 5: Detecting Sentiment Polarity Using the Heatmap of Sentence. 296-300 - Jakub Machacek:
BUTknot at SemEval-2016 Task 5: Supervised Machine Learning with Term Substitution Approach in Aspect Category Detection. 301-305 - Tamara Álvarez-López, Jonathan Juncal-Martínez, Milagros Fernández Gavilanes, Enrique Costa-Montenegro, Francisco Javier González-Castaño:
GTI at SemEval-2016 Task 5: SVM and CRF for Aspect Detection and Unsupervised Aspect-Based Sentiment Analysis. 306-311 - Dionysios Xenos, Panagiotis Theodorakakos, John Pavlopoulos, Prodromos Malakasiotis, Ion Androutsopoulos:
AUEB-ABSA at SemEval-2016 Task 5: Ensembles of Classifiers and Embeddings for Aspect Based Sentiment Analysis. 312-317 - Shubham Pateria, Prafulla Choubey:
AKTSKI at SemEval-2016 Task 5: Aspect Based Sentiment Analysis for Consumer Reviews. 318-324 - Vladimir Mayorov, Ivan Andrianov:
MayAnd at SemEval-2016 Task 5: Syntactic and word2vec-based approach to aspect-based polarity detection in Russian. 325-329 - Sebastian Ruder, Parsa Ghaffari, John G. Breslin:
INSIGHT-1 at SemEval-2016 Task 5: Deep Learning for Multilingual Aspect-based Sentiment Analysis. 330-336 - Fatih Samet Çetin, Ezgi Yildirim, Can Özbey, Gülsen Eryigit:
TGB at SemEval-2016 Task 5: Multi-Lingual Constraint System for Aspect Based Sentiment Analysis. 337-341 - Tomás Hercig, Tomás Brychcín, Lukás Svoboda, Michal Konkol:
UWB at SemEval-2016 Task 5: Aspect Based Sentiment Analysis. 342-349 - Hussam Hamdan:
SentiSys at SemEval-2016 Task 5: Opinion Target Extraction and Sentiment Polarity Detection. 350-355 - Kim Schouten, Flavius Frasincar:
COMMIT at SemEval-2016 Task 5: Sentiment Analysis with Rhetorical Structure Theory. 356-360 - Mengxiao Jiang, Zhihua Zhang, Man Lan:
ECNU at SemEval-2016 Task 5: Extracting Effective Features from Relevant Fragments in Sentence for Aspect-Based Sentiment Analysis in Reviews. 361-366 - Ales Tamchyna, Katerina Veselovská:
UFAL at SemEval-2016 Task 5: Recurrent Neural Networks for Sentence Classification. 367-371 - Olga Vechtomova, Anni He:
UWaterloo at SemEval-2016 Task 5: Minimally Supervised Approaches to Aspect-Based Sentiment Analysis. 372-377 - Marcelo Dias, Karin Becker:
INF-UFRGS-OPINION-MINING at SemEval-2016 Task 6: Automatic Generation of a Training Corpus for Unsupervised Identification of Stance in Tweets. 378-383 - Wan Wei, Xiao Zhang, Xuqin Liu, Wei Chen, Tengjiao Wang:
pkudblab at SemEval-2016 Task 6 : A Specific Convolutional Neural Network System for Effective Stance Detection. 384-388 - Isabelle Augenstein, Andreas Vlachos, Kalina Bontcheva:
USFD at SemEval-2016 Task 6: Any-Target Stance Detection on Twitter with Autoencoders. 389-393 - Can Liu, Wen Li, Bradford Demarest, Yue Chen, Sara Couture, Daniel Dakota, Nikita Haduong, Noah Kaufman, Andrew Lamont, Manan Pancholi, Kenneth Steimel, Sandra Kübler:
IUCL at SemEval-2016 Task 6: An Ensemble Model for Stance Detection in Twitter. 394-400 - Yuki Igarashi, Hiroya Komatsu, Sosuke Kobayashi, Naoaki Okazaki, Kentaro Inui:
Tohoku at SemEval-2016 Task 6: Feature-based Model versus Convolutional Neural Network for Stance Detection. 401-407 - Peter Krejzl, Josef Steinberger:
UWB at SemEval-2016 Task 6: Stance Detection. 408-412 - Prashanth Vijayaraghavan, Ivan Sysoev, Soroush Vosoughi, Deb Roy:
DeepStance at SemEval-2016 Task 6: Detecting Stance in Tweets Using Character and Word-Level CNNs. 413-419 - Amita Misra, Brian Ecker, Theodore Handleman, Nicolas Hahn, Marilyn A. Walker:
NLDS-UCSC at SemEval-2016 Task 6: A Semi-Supervised Approach to Detecting Stance in Tweets. 420-427 - Michael Wojatzki, Torsten Zesch:
ltl.uni-due at SemEval-2016 Task 6: Stance Detection in Social Media Using Stacked Classifiers. 428-433 - Heba Elfardy, Mona T. Diab:
CU-GWU Perspective at SemEval-2016 Task 6: Ideological Stance Detection in Informal Text. 434-439 - Braja Gopal Patra, Dipankar Das, Sivaji Bandyopadhyay:
JU_NLP at SemEval-2016 Task 6: Detecting Stance in Tweets using Support Vector Machines. 440-444 - Henrik Bøhler, Petter Asla, Erwin Marsi, Rune Sætre:
IDI$@$NTNU at SemEval-2016 Task 6: Detecting Stance in Tweets Using Shallow Features and GloVe Vectors for Word Representation. 445-450 - Zhihua Zhang, Man Lan:
ECNU at SemEval 2016 Task 6: Relevant or Not? Supportive or Not? A Two-step Learning System for Automatic Detecting Stance in Tweets. 451-457 - Guido Zarrella, Amy Marsh:
MITRE at SemEval-2016 Task 6: Transfer Learning for Stance Detection. 458-463 - Martin Tutek, Ivan Sekulic, Paula Gombar, Ivan Paljak, Filip Culinovic, Filip Boltuzic, Mladen Karan, Domagoj Alagic, Jan Snajder:
TakeLab at SemEval-2016 Task 6: Stance Classification in Tweets Using a Genetic Algorithm Based Ensemble. 464-468 - Amal Htait, Sébastien Fournier, Patrice Bellot:
LSIS at SemEval-2016 Task 7: Using Web Search Engines for English and Arabic Unsupervised Sentiment Intensity Prediction. 469-473 - Eshrag Refaee, Verena Rieser:
iLab-Edinburgh at SemEval-2016 Task 7: A Hybrid Approach for Determining Sentiment Intensity of Arabic Twitter Phrases. 474-480 - Ladislav Lenc, Pavel Král, Václav Rajtmajer:
UWB at SemEval-2016 Task 7: Novel Method for Automatic Sentiment Intensity Determination. 481-485 - Samhaa R. El-Beltagy:
NileTMRG at SemEval-2016 Task 7: Deriving Prior Polarities for Arabic Sentiment Terms. 486-490 - Feixiang Wang, Zhihua Zhang, Man Lan:
ECNU at SemEval-2016 Task 7: An Enhanced Supervised Learning Method for Lexicon Sentiment Intensity Ranking. 491-496 - Eneko Agirre, Carmen Banea, Daniel M. Cer, Mona T. Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, German Rigau, Janyce Wiebe:
SemEval-2016 Task 1: Semantic Textual Similarity, Monolingual and Cross-Lingual Evaluation. 497-511 - Eneko Agirre, Aitor Gonzalez-Agirre, Iñigo Lopez-Gazpio, Montse Maritxalar, German Rigau, Larraitz Uria:
SemEval-2016 Task 2: Interpretable Semantic Textual Similarity. 512-524 - Preslav Nakov, Lluís Màrquez, Alessandro Moschitti, Walid Magdy, Hamdy Mubarak, Abed Alhakim Freihat, James R. Glass, Bilal Randeree:
SemEval-2016 Task 3: Community Question Answering. 525-545 - Nathan Schneider, Dirk Hovy, Anders Johannsen, Marine Carpuat:
SemEval-2016 Task 10: Detecting Minimal Semantic Units and their Meanings (DiMSUM). 546-559 - Gustavo Paetzold, Lucia Specia:
SemEval 2016 Task 11: Complex Word Identification. 560-569 - Duygu Ataman, José Guilherme Camargo de Souza, Marco Turchi, Matteo Negri:
FBK HLT-MT at SemEval-2016 Task 1: Cross-lingual Semantic Similarity Measurement Using Quality Estimation Features and Compositional Bilingual Word Embeddings. 570-576 - Sam Henry, Allison Sands:
VRep at SemEval-2016 Task 1 and Task 2: A System for Interpretable Semantic Similarity. 577-583 - Peng Li, Heng Huang:
UTA DLNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation. 584-587 - Tomás Brychcín, Lukás Svoboda:
UWB at SemEval-2016 Task 1: Semantic Textual Similarity using Lexical, Syntactic, and Semantic Information. 588-594 - Matthias Liebeck, Philipp Pollack, Pashutan Modaresi, Stefan Conrad:
HHU at SemEval-2016 Task 1: Multiple Approaches to Measuring Semantic Textual Similarity. 595-601 - Barbara Rychalska, Katarzyna Pakulska, Krystyna Chodorowska, Wojciech Walczak, Piotr Andruszkiewicz:
Samsung Poland NLP Team at SemEval-2016 Task 1: Necessity for diversity; combining recursive autoencoders, WordNet and ensemble methods to measure semantic similarity. 602-608 - Ahmet Aker, Frédéric Blain, Andrés Duque, Marina Fomicheva, Jurica Seva, Kashif Shah, Daniel Beck:
USFD at SemEval-2016 Task 1: Putting different State-of-the-Arts into a Box. 609-613 - Piotr Przybyla, Nhung T. H. Nguyen, Matthew Shardlow, Georgios Kontonatsios, Sophia Ananiadou:
NaCTeM at SemEval-2016 Task 1: Inferring sentence-level semantic similarity from an ensemble of complementary lexical and sentence-level features. 614-620 - Junfeng Tian, Man Lan:
ECNU at SemEval-2016 Task 1: Leveraging Word Embedding From Macro and Micro Views to Boost Performance for Semantic Textual Similarity. 621-627 - Liling Tan, Carolina Scarton, Lucia Specia, Josef van Genabith:
SAARSHEFF at SemEval-2016 Task 1: Semantic Textual Similarity with Machine Translation Evaluation Metrics and (eXtreme) Boosted Tree Ensembles. 628-633 - Hanna Béchara, Rohit Gupta, Liling Tan, Constantin Orasan, Ruslan Mitkov, Josef van Genabith:
WOLVESAAR at SemEval-2016 Task 1: Replicating the Success of Monolingual Word Alignment and Neural Embeddings for Semantic Textual Similarity. 634-639 - Rajendra Banjade, Nabin Maharjan, Dipesh Gautam, Vasile Rus:
DTSim at SemEval-2016 Task 1: Semantic Similarity Model Including Multi-Level Alignment and Vector-Based Compositional Semantics. 640-644 - Cheng Fu, Bo An, Xianpei Han, Le Sun:
ISCAS_NLP at SemEval-2016 Task 1: Sentence Similarity Based on Support Vector Regression using Multiple Features. 645-649 - Md. Arafat Sultan, Steven Bethard, Tamara Sumner:
DLS$@$CU at SemEval-2016 Task 1: Supervised Models of Sentence Similarity. 650-655 - Chris Hokamp, Piyush Arora:
DCU-SEManiacs at SemEval-2016 Task 1: Synthetic Paragram Embeddings for Semantic Textual Similarity. 656-662 - Hanan Aldarmaki, Mona T. Diab:
GWU NLP at SemEval-2016 Shared Task 1: Matrix Factorization for Crosslingual STS. 663-667 - Chi-kiu Lo, Cyril Goutte, Michel Simard:
CNRC at SemEval-2016 Task 1: Experiments in Crosslingual Semantic Textual Similarity. 668-673 - Naveed Afzal, Yanshan Wang, Hongfang Liu:
MayoNLP at SemEval-2016 Task 1: Semantic Textual Similarity based on Lexical Semantic Net and Deep Learning Semantic Model. 674-679 - Harish Tayyar Madabushi, Mark Buhagiar, Mark Lee:
UoB-UK at SemEval-2016 Task 1: A Flexible and Extendable System for Semantic Text Similarity using Types, Surprise and Phrase Linking. 680-685 - Hao Wu, Heyan Huang, Wenpeng Lu:
BIT at SemEval-2016 Task 1: Sentence Similarity Based on Alignments and Vector with the Weight of Information Content. 686-690 - Hideo Itoh:
RICOH at SemEval-2016 Task 1: IR-based Semantic Textual Similarity Estimation. 691-695 - Maryna Beliuha, Maryna Chernyshevich:
IHS-RD-Belarus at SemEval-2016 Task 1: Multistage Approach for Measuring Semantic Similarity. 696-701 - Sandip Sarkar, Dipankar Das, Partha Pakray, Alexander F. Gelbukh:
JUNITMZ at SemEval-2016 Task 1: Identifying Semantic Similarity Using Levenshtein Ratio. 702-705 - Barathi Ganesh H. B., M. Anand Kumar, K. P. Soman:
Amrita_CEN at SemEval-2016 Task 1: Semantic Relation from Word Embeddings in Higher Dimension. 706-711 - John Philip McCrae, Kartik Asooja, Nitish Aggarwal, Paul Buitelaar:
NUIG-UNLP at SemEval-2016 Task 1: Soft Alignment and Deep Learning for Semantic Textual Similarity. 712-717 - Kolawole Adebayo, Luigi Di Caro, Guido Boella:
NORMAS at SemEval-2016 Task 1: SEMSIM: A Multi-Feature Approach to Semantic Text Similarity. 718-725 - Oscar William Lightgow Serrano, Iván Vladimir Meza Ruíz, Albert Manuel Orozco Camacho, Jorge García Flores, Davide Buscaldi:
LIPN-IIMAS at SemEval-2016 Task 1: Random Forest Regression Experiments on Align-and-Differentiate and Word Embeddings penalizing strategies. 726-731 - Milton King, Waseem Gharbieh, SoHyun Park, Paul Cook:
UNBNLP at SemEval-2016 Task 1: Semantic Textual Similarity: A Unified Framework for Semantic Processing and Evaluation. 732-735 - Asli Eyecioglu, Bill Keller:
ASOBEK at SemEval-2016 Task 1: Sentence Representation with Character N-gram Embeddings for Semantic Textual Similarity. 736-740