default search action
Srinadh Bhojanapalli
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c29]Nilesh Gupta, Devvrit, Ankit Singh Rawat, Srinadh Bhojanapalli, Prateek Jain, Inderjit S. Dhillon:
Dual-Encoders for Extreme Multi-label Classification. ICLR 2024 - [c28]Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontañón, Manzil Zaheer, Sumit Sanghai, Yiming Yang, Sanjiv Kumar, Srinadh Bhojanapalli:
Functional Interpolation for Relative Positions improves Long Context Transformers. ICLR 2024 - [i40]Yashas Samaga, Varun Yerram, Chong You, Srinadh Bhojanapalli, Sanjiv Kumar, Prateek Jain, Praneeth Netrapalli:
HiRE: High Recall Approximate Top-k Estimation for Efficient LLM Inference. CoRR abs/2402.09360 (2024) - [i39]Jae Hun Ro, Srinadh Bhojanapalli, Zheng Xu, Yanxiang Zhang, Ananda Theertha Suresh:
Efficient Language Model Architectures for Differentially Private Federated Learning. CoRR abs/2403.08100 (2024) - [i38]Hanseul Cho, Jaeyoung Cha, Pranjal Awasthi, Srinadh Bhojanapalli, Anupam Gupta, Chulhee Yun:
Position Coupling: Leveraging Task Structure for Improved Length Generalization of Transformers. CoRR abs/2405.20671 (2024) - 2023
- [c27]Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Felix Chern, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar:
The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers. ICLR 2023 - [c26]Lovish Madaan, Srinadh Bhojanapalli, Himanshu Jain, Prateek Jain:
Treeformer: Dense Gradient Trees for Efficient Attention Computation. ICLR 2023 - [c25]Vaishnavh Nagarajan, Aditya Krishna Menon, Srinadh Bhojanapalli, Hossein Mobahi, Sanjiv Kumar:
On student-teacher deviations in distillation: does it pay to disobey? NeurIPS 2023 - [i37]Vaishnavh Nagarajan, Aditya Krishna Menon, Srinadh Bhojanapalli, Hossein Mobahi, Sanjiv Kumar:
On student-teacher deviations in distillation: does it pay to disobey? CoRR abs/2301.12923 (2023) - [i36]Samy Jelassi, Boris Hanin, Ziwei Ji, Sashank J. Reddi, Srinadh Bhojanapalli, Sanjiv Kumar:
Depth Dependence of μP Learning Rates in ReLU MLPs. CoRR abs/2305.07810 (2023) - [i35]Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontañón, Manzil Zaheer, Sumit Sanghai, Yiming Yang, Sanjiv Kumar, Srinadh Bhojanapalli:
Functional Interpolation for Relative Positions Improves Long Context Transformers. CoRR abs/2310.04418 (2023) - [i34]Nilesh Gupta, Devvrit Khatri, Ankit Singh Rawat, Srinadh Bhojanapalli, Prateek Jain, Inderjit S. Dhillon:
Efficacy of Dual-Encoders for Extreme Multi-Label Classification. CoRR abs/2310.10636 (2023) - 2022
- [j2]Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar:
Teacher's pet: understanding and mitigating biases in distillation. Trans. Mach. Learn. Res. 2022 (2022) - [c24]Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank J. Reddi, Sanjiv Kumar:
Robust Training of Neural Networks Using Scale Invariant Architectures. ICML 2022: 12656-12684 - [c23]Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, Srinadh Bhojanapalli:
On the Adversarial Robustness of Mixture of Experts. NeurIPS 2022 - [i33]Zhiyuan Li, Srinadh Bhojanapalli, Manzil Zaheer, Sashank J. Reddi, Sanjiv Kumar:
Robust Training of Neural Networks using Scale Invariant Architectures. CoRR abs/2202.00980 (2022) - [i32]Lovish Madaan, Srinadh Bhojanapalli, Himanshu Jain, Prateek Jain:
Treeformer: Dense Gradient Trees for Efficient Attention Computation. CoRR abs/2208.09015 (2022) - [i31]Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Felix Chern, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar:
Large Models are Parsimonious Learners: Activation Sparsity in Trained Transformers. CoRR abs/2210.06313 (2022) - [i30]Joan Puigcerver, Rodolphe Jenatton, Carlos Riquelme, Pranjal Awasthi, Srinadh Bhojanapalli:
On the Adversarial Robustness of Mixture of Experts. CoRR abs/2210.10253 (2022) - 2021
- [c22]Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli, Hyung Won Chung, Yin-Wen Chang, Chun-Sung Ferng:
A Simple and Effective Positional Encoding for Transformers. EMNLP (1) 2021: 2974-2988 - [c21]Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, Andreas Veit:
Understanding Robustness of Transformers for Image Classification. ICCV 2021: 10211-10221 - [c20]Jingzhao Zhang, Aditya Krishna Menon, Andreas Veit, Srinadh Bhojanapalli, Sanjiv Kumar, Suvrit Sra:
Coping with Label Shift via Distributionally Robust Optimisation. ICLR 2021 - [i29]Srinadh Bhojanapalli, Kimberly Wilber, Andreas Veit, Ankit Singh Rawat, Seungyeon Kim, Aditya Krishna Menon, Sanjiv Kumar:
On the Reproducibility of Neural Network Predictions. CoRR abs/2102.03349 (2021) - [i28]Srinadh Bhojanapalli, Ayan Chakrabarti, Daniel Glasner, Daliang Li, Thomas Unterthiner, Andreas Veit:
Understanding Robustness of Transformers for Image Classification. CoRR abs/2103.14586 (2021) - [i27]Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli, Hyung Won Chung, Yin-Wen Chang, Chun-Sung Ferng:
Demystifying the Better Performance of Position Encoding Variants for Transformer. CoRR abs/2104.08698 (2021) - [i26]Srinadh Bhojanapalli, Ayan Chakrabarti, Himanshu Jain, Sanjiv Kumar, Michal Lukasik, Andreas Veit:
Eigen Analysis of Self-Attention and its Reconstruction from Partial Computation. CoRR abs/2106.08823 (2021) - [i25]Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar:
Teacher's pet: understanding and mitigating biases in distillation. CoRR abs/2106.10494 (2021) - [i24]Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain, Frederick Liu, Yin-Wen Chang, Sanjiv Kumar:
Leveraging redundancy in attention with Reuse Transformers. CoRR abs/2110.06821 (2021) - 2020
- [c19]Michal Lukasik, Himanshu Jain, Aditya Krishna Menon, Seungyeon Kim, Srinadh Bhojanapalli, Felix X. Yu, Sanjiv Kumar:
Semantic Label Smoothing for Sequence to Sequence Problems. EMNLP (1) 2020: 4992-4998 - [c18]Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, Cho-Jui Hsieh:
Large Batch Optimization for Deep Learning: Training BERT in 76 minutes. ICLR 2020 - [c17]Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Are Transformers universal approximators of sequence-to-sequence functions? ICLR 2020 - [c16]Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Low-Rank Bottleneck in Multi-head Attention Models. ICML 2020: 864-873 - [c15]Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar:
Does label smoothing mitigate label noise? ICML 2020: 6448-6458 - [c14]Rudy Bunel, Oliver Hinder, Srinadh Bhojanapalli, Krishnamurthy Dvijotham:
An efficient nonconvex reformulation of stagewise convex optimization problems. NeurIPS 2020 - [c13]Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
O(n) Connections are Expressive Enough: Universal Approximability of Sparse Transformers. NeurIPS 2020 - [i23]Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Low-Rank Bottleneck in Multi-head Attention Models. CoRR abs/2002.07028 (2020) - [i22]Michal Lukasik, Srinadh Bhojanapalli, Aditya Krishna Menon, Sanjiv Kumar:
Does label smoothing mitigate label noise? CoRR abs/2003.02819 (2020) - [i21]Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
$O(n)$ Connections are Expressive Enough: Universal Approximability of Sparse Transformers. CoRR abs/2006.04862 (2020) - [i20]Michal Lukasik, Himanshu Jain, Aditya Krishna Menon, Seungyeon Kim, Srinadh Bhojanapalli, Felix X. Yu, Sanjiv Kumar:
Semantic Label Smoothing for Sequence to Sequence Problems. CoRR abs/2010.07447 (2020) - [i19]Jingzhao Zhang, Aditya Krishna Menon, Andreas Veit, Srinadh Bhojanapalli, Sanjiv Kumar, Suvrit Sra:
Coping with Label Shift via Distributionally Robust Optimisation. CoRR abs/2010.12230 (2020) - [i18]Rudy Bunel, Oliver Hinder, Srinadh Bhojanapalli, Krishnamurthy Dvijotham:
An efficient nonconvex reformulation of stagewise convex optimization problems. CoRR abs/2010.14322 (2020) - [i17]Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix X. Yu, Sanjiv Kumar:
Modifying Memories in Transformer Models. CoRR abs/2012.00363 (2020)
2010 – 2019
- 2019
- [c12]Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, Nathan Srebro:
The role of over-parametrization in generalization of neural networks. ICLR (Poster) 2019 - [i16]Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Are Transformers universal approximators of sequence-to-sequence functions? CoRR abs/1912.10077 (2019) - 2018
- [c11]Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, Praneeth Netrapalli:
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form. COLT 2018: 3243-3270 - [c10]Behnam Neyshabur, Srinadh Bhojanapalli, Nathan Srebro:
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks. ICLR (Poster) 2018 - [c9]Suriya Gunasekar, Blake E. Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, Nathan Srebro:
Implicit Regularization in Matrix Factorization. ITA 2018: 1-10 - [i15]Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, Praneeth Netrapalli:
Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form. CoRR abs/1803.00186 (2018) - [i14]Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, Nathan Srebro:
Towards Understanding the Role of Over-Parametrization in Generalization of Neural Networks. CoRR abs/1805.12076 (2018) - 2017
- [c8]Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nati Srebro:
Exploring Generalization in Deep Learning. NIPS 2017: 5947-5956 - [c7]Suriya Gunasekar, Blake E. Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, Nati Srebro:
Implicit Regularization in Matrix Factorization. NIPS 2017: 6151-6159 - [i13]Behnam Neyshabur, Srinadh Bhojanapalli, Ayan Chakrabarti:
Stabilizing GAN Training with Multiple Random Projections. CoRR abs/1705.07831 (2017) - [i12]Suriya Gunasekar, Blake E. Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, Nathan Srebro:
Implicit Regularization in Matrix Factorization. CoRR abs/1705.09280 (2017) - [i11]Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro:
Exploring Generalization in Deep Learning. CoRR abs/1706.08947 (2017) - [i10]Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, Nathan Srebro:
A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds for Neural Networks. CoRR abs/1707.09564 (2017) - [i9]Anastasios Kyrillidis, Amir Kalev, Dohyung Park, Srinadh Bhojanapalli, Constantine Caramanis, Sujay Sanghavi:
Provable quantum state tomography via non-convex methods. CoRR abs/1711.02524 (2017) - 2016
- [c6]Srinadh Bhojanapalli, Anastasios Kyrillidis, Sujay Sanghavi:
Dropping Convexity for Faster Semi-definite Optimization. COLT 2016: 530-582 - [c5]Shanshan Wu, Srinadh Bhojanapalli, Sujay Sanghavi, Alexandros G. Dimakis:
Single Pass PCA of Matrix Products. NIPS 2016: 2577-2585 - [c4]Srinadh Bhojanapalli, Behnam Neyshabur, Nati Srebro:
Global Optimality of Local Search for Low Rank Matrix Recovery. NIPS 2016: 3873-3881 - [i8]Srinadh Bhojanapalli, Behnam Neyshabur, Nathan Srebro:
Global Optimality of Local Search for Low Rank Matrix Recovery. CoRR abs/1605.07221 (2016) - [i7]Dohyung Park, Anastasios Kyrillidis, Srinadh Bhojanapalli, Constantine Caramanis, Sujay Sanghavi:
Provable non-convex projected gradient descent for a class of constrained matrix optimization problems. CoRR abs/1606.01316 (2016) - [i6]Shanshan Wu, Srinadh Bhojanapalli, Sujay Sanghavi, Alexandros G. Dimakis:
Single Pass PCA of Matrix Products. CoRR abs/1610.06656 (2016) - 2015
- [j1]Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, Rachel A. Ward:
Completing any low-rank matrix, provably. J. Mach. Learn. Res. 16: 2999-3034 (2015) - [c3]Srinadh Bhojanapalli, Prateek Jain, Sujay Sanghavi:
Tighter Low-rank Approximation via Sampling the Leveraged Element. SODA 2015: 902-920 - [i5]Srinadh Bhojanapalli, Sujay Sanghavi:
A New Sampling Technique for Tensors. CoRR abs/1502.05023 (2015) - [i4]Srinadh Bhojanapalli, Anastasios Kyrillidis, Sujay Sanghavi:
Dropping Convexity for Faster Semi-definite Optimization. CoRR abs/1509.03917 (2015) - 2014
- [c2]Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, Rachel A. Ward:
Coherent Matrix Completion. ICML 2014: 674-682 - [c1]Srinadh Bhojanapalli, Prateek Jain:
Universal Matrix Completion. ICML 2014: 1881-1889 - [i3]Srinadh Bhojanapalli, Prateek Jain:
Universal Matrix Completion. CoRR abs/1402.2324 (2014) - [i2]Srinadh Bhojanapalli, Prateek Jain, Sujay Sanghavi:
Tighter Low-rank Approximation via Sampling the Leveraged Element. CoRR abs/1410.3886 (2014) - 2013
- [i1]Srinadh Bhojanapalli, Yudong Chen, Sujay Sanghavi, Rachel A. Ward:
Coherent Matrix Completion. CoRR abs/1306.2979 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-08 20:12 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint