default search action
Ethan Fetaya
Person information
- affiliation: Bar-Ilan University, Istrael
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j4]Eyal Betzalel, Coby Penso, Ethan Fetaya:
Evaluation Metrics for Generative Models: An Empirical Study. Mach. Learn. Knowl. Extr. 6(3): 1531-1544 (2024) - 2023
- [j3]Idan Achituve, Wenbo Wang, Ethan Fetaya, Amir Leshem:
Communication Efficient Distributed Learning Over Wireless Channels. IEEE Signal Process. Lett. 30: 1402-1406 (2023) - 2022
- [j2]Dan Levi, Liran Gispan, Niv Giladi, Ethan Fetaya:
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks. Sensors 22(15): 5540 (2022) - 2020
- [j1]Ethan Fetaya, Yonatan Lifshitz, Elad Aaron, Shai Gordin:
Restoration of fragmentary Babylonian texts using recurrent neural networks. Proc. Natl. Acad. Sci. USA 117(37): 22743-22751 (2020)
Conference and Workshop Papers
- 2024
- [c38]Yochai Yemini, Aviv Shamsian, Lior Bracha, Sharon Gannot, Ethan Fetaya:
LipVoicer: Generating Speech from Silent Videos Guided by Lip Reading. ICLR 2024 - [c37]Idan Achituve, Idit Diamant, Arnon Netzer, Gal Chechik, Ethan Fetaya:
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning. ICML 2024 - [c36]Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, Haggai Maron:
Equivariant Deep Weight Space Alignment. ICML 2024 - [c35]Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, Haggai Maron:
Improved Generalization of Weight Space Networks via Augmentations. ICML 2024 - [c34]Boris Rubenchik, Elior Hadad, Eli Tzirkel, Ethan Fetaya, Sharon Gannot:
Low-Latency Single-Microphone Speaker Separation with Temporal Convolutional Networks Using Speaker Representations. IWAENC 2024: 155-159 - 2023
- [c33]Hila Levi, Guy Heller, Dan Levi, Ethan Fetaya:
Object-Centric Open-Vocabulary Image Retrieval with Aggregated Features. BMVC 2023: 608 - [c32]Lior Bracha, Eitan Shaar, Aviv Shamsian, Ethan Fetaya, Gal Chechik:
DisCLIP: Open-Vocabulary Referring Expression Generation. BMVC 2023: 670-673 - [c31]Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, Haggai Maron:
Equivariant Architectures for Learning in Deep Weight Spaces. ICML 2023: 25790-25816 - [c30]Aviv Shamsian, Aviv Navon, Neta Glazer, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya:
Auxiliary Learning as an Asymmetric Bargaining Game. ICML 2023: 30689-30705 - [c29]Guy Heller, Ethan Fetaya:
Can Stochastic Gradient Langevin Dynamics Provide Differential Privacy for Deep Learning? SaTML 2023: 68-106 - [c28]Idan Achituve, Gal Chechik, Ethan Fetaya:
Guided Deep Kernel Learning. UAI 2023: 11-21 - 2022
- [c27]Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya:
Multi-Task Learning as a Bargaining Game. ICML 2022: 16428-16446 - [c26]Coby Penso, Idan Achituve, Ethan Fetaya:
Functional Ensemble Distillation. NeurIPS 2022 - 2021
- [c25]Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, Ethan Fetaya:
Auxiliary Learning by Implicit Differentiation. ICLR 2021 - [c24]Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik:
Learning the Pareto Front with Hypernetworks. ICLR 2021 - [c23]Idan Achituve, Aviv Navon, Yochai Yemini, Gal Chechik, Ethan Fetaya:
GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning. ICML 2021: 54-65 - [c22]Aviv Shamsian, Aviv Navon, Ethan Fetaya, Gal Chechik:
Personalized Federated Learning using Hypernetworks. ICML 2021: 9489-9502 - [c21]Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, Haggai Maron:
From Local Structures to Size Generalization in Graph Neural Networks. ICML 2021: 11975-11986 - [c20]Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya:
On Learning Sets of Symmetric Elements (Extended Abstract). IJCAI 2021: 4794-4798 - [c19]Yochai Yemini, Ethan Fetaya, Haggai Maron, Sharon Gannot:
Scene-Agnostic Multi-Microphone Speech Dereverberation. Interspeech 2021: 1129-1133 - [c18]Idan Achituve, Aviv Shamsian, Aviv Navon, Gal Chechik, Ethan Fetaya:
Personalized Federated Learning With Gaussian Processes. NeurIPS 2021: 8392-8406 - 2020
- [c17]Ethan Fetaya, Jörn-Henrik Jacobsen, Will Grathwohl, Richard S. Zemel:
Understanding the Limitations of Conditional Generative Models. ICLR 2020 - [c16]Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya:
On Learning Sets of Symmetric Elements. ICML 2020: 6734-6744 - 2019
- [c15]KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard S. Zemel, Xaq Pitkow:
Inference in Probabilistic Graphical Models by Graph Neural Networks. ACSSC 2019: 868-875 - [c14]Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman:
On the Universality of Invariant Networks. ICML 2019: 4363-4371 - [c13]Mengye Ren, Renjie Liao, Ethan Fetaya, Richard S. Zemel:
Incremental Few-Shot Learning with Attention Attractor Networks. NeurIPS 2019: 5276-5286 - 2018
- [c12]Oran Shayer, Dan Levi, Ethan Fetaya:
Learning Discrete Weights Using the Local Reparameterization Trick. ICLR (Poster) 2018 - [c11]KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard S. Zemel, Xaq Pitkow:
Inference in probabilistic graphical models by Graph Neural Networks. ICLR (Workshop) 2018 - [c10]Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Raquel Urtasun, Richard S. Zemel:
Leveraging Constraint Logic Programming for Neural Guided Program Synthesis. ICLR (Workshop) 2018 - [c9]Thomas N. Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard S. Zemel:
Neural Relational Inference for Interacting Systems. ICML 2018: 2693-2702 - [c8]Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, Richard S. Zemel:
Reviving and Improving Recurrent Back-Propagation. ICML 2018: 3088-3097 - [c7]Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Matthew Might, Raquel Urtasun, Richard S. Zemel:
Neural Guided Constraint Logic Programming for Program Synthesis. NeurIPS 2018: 1744-1753 - 2017
- [c6]Noa Garnett, Shai Silberstein, Shaul Oron, Ethan Fetaya, Uri Verner, Ariel Ayash, Vlad Goldner, Rafi Cohen, Kobi Horn, Dan Levi:
Real-Time Category-Based and General Obstacle Detection for Autonomous Driving. ICCV Workshops 2017: 198-205 - 2016
- [c5]Ariel Jaffe, Ethan Fetaya, Boaz Nadler, Tingting Jiang, Yuval Kluger:
Unsupervised Ensemble Learning with Dependent Classifiers. AISTATS 2016: 351-360 - [c4]Ita Lifshitz, Ethan Fetaya, Shimon Ullman:
Human Pose Estimation Using Deep Consensus Voting. ECCV (2) 2016: 246-260 - 2015
- [c3]Ethan Fetaya, Ohad Shamir, Shimon Ullman:
Graph Approximation and Clustering on a Budget. AISTATS 2015 - [c2]Dan Levi, Noa Garnett, Ethan Fetaya:
StixelNet: A Deep Convolutional Network for Obstacle Detection and Road Segmentation. BMVC 2015: 109.1-109.12 - [c1]Ethan Fetaya, Shimon Ullman:
Learning Local Invariant Mahalanobis Distances. ICML 2015: 162-168
Informal and Other Publications
- 2024
- [i41]Idan Achituve, Idit Diamant, Arnon Netzer, Gal Chechik, Ethan Fetaya:
Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning. CoRR abs/2402.04005 (2024) - [i40]Aviv Shamsian, Aviv Navon, David W. Zhang, Yan Zhang, Ethan Fetaya, Gal Chechik, Haggai Maron:
Improved Generalization of Weight Space Networks via Augmentations. CoRR abs/2402.04081 (2024) - [i39]Neta Glazer, Aviv Navon, Aviv Shamsian, Ethan Fetaya:
Multi Task Inverse Reinforcement Learning for Common Sense Reward. CoRR abs/2402.11367 (2024) - 2023
- [i38]Aviv Navon, Aviv Shamsian, Idan Achituve, Ethan Fetaya, Gal Chechik, Haggai Maron:
Equivariant Architectures for Learning in Deep Weight Spaces. CoRR abs/2301.12780 (2023) - [i37]Aviv Shamsian, Aviv Navon, Neta Glazer, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya:
Auxiliary Learning as an Asymmetric Bargaining Game. CoRR abs/2301.13501 (2023) - [i36]Idan Achituve, Gal Chechik, Ethan Fetaya:
Guided Deep Kernel Learning. CoRR abs/2302.09574 (2023) - [i35]Lior Bracha, Eitan Shaar, Aviv Shamsian, Ethan Fetaya, Gal Chechik:
DisCLIP: Open-Vocabulary Referring Expression Generation. CoRR abs/2305.19108 (2023) - [i34]Yochai Yemini, Aviv Shamsian, Lior Bracha, Sharon Gannot, Ethan Fetaya:
LipVoicer: Generating Speech from Silent Videos Guided by Lip Reading. CoRR abs/2306.03258 (2023) - [i33]Ariel Lapid, Idan Achituve, Lior Bracha, Ethan Fetaya:
GD-VDM: Generated Depth for better Diffusion-based Video Generation. CoRR abs/2306.11173 (2023) - [i32]Guy Berger, Aviv Navon, Ethan Fetaya:
Learning Discrete Weights and Activations Using the Local Reparameterization Trick. CoRR abs/2307.01683 (2023) - [i31]Hila Levi, Guy Heller, Dan Levi, Ethan Fetaya:
Object-Centric Open-Vocabulary Image-Retrieval with Aggregated Features. CoRR abs/2309.14999 (2023) - [i30]Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, Haggai Maron:
Equivariant Deep Weight Space Alignment. CoRR abs/2310.13397 (2023) - [i29]Aviv Shamsian, David W. Zhang, Aviv Navon, Yan Zhang, Miltiadis Kofinas, Idan Achituve, Riccardo Valperga, Gertjan J. Burghouts, Efstratios Gavves, Cees G. M. Snoek, Ethan Fetaya, Gal Chechik, Haggai Maron:
Data Augmentations in Deep Weight Spaces. CoRR abs/2311.08851 (2023) - 2022
- [i28]Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, Ethan Fetaya:
Multi-Task Learning as a Bargaining Game. CoRR abs/2202.01017 (2022) - [i27]Coby Penso, Idan Achituve, Ethan Fetaya:
Functional Ensemble Distillation. CoRR abs/2206.02183 (2022) - [i26]Eyal Betzalel, Coby Penso, Aviv Navon, Ethan Fetaya:
A Study on the Evaluation of Generative Models. CoRR abs/2206.10935 (2022) - [i25]Idan Achituve, Wenbo Wang, Ethan Fetaya, Amir Leshem:
Communication Efficient Distributed Learning over Wireless Channels. CoRR abs/2209.01682 (2022) - 2021
- [i24]Idan Achituve, Aviv Navon, Yochai Yemini, Gal Chechik, Ethan Fetaya:
GP-Tree: A Gaussian Process Classifier for Few-Shot Incremental Learning. CoRR abs/2102.07868 (2021) - [i23]Aviv Shamsian, Aviv Navon, Ethan Fetaya, Gal Chechik:
Personalized Federated Learning using Hypernetworks. CoRR abs/2103.04628 (2021) - [i22]Idan Achituve, Aviv Shamsian, Aviv Navon, Gal Chechik, Ethan Fetaya:
Personalized Federated Learning with Gaussian Processes. CoRR abs/2106.15482 (2021) - [i21]Guy Heller, Ethan Fetaya:
Can Stochastic Gradient Langevin Dynamics Provide Differential Privacy for Deep Learning? CoRR abs/2110.05057 (2021) - 2020
- [i20]Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya:
On Learning Sets of Symmetric Elements. CoRR abs/2002.08599 (2020) - [i19]Ethan Fetaya, Yonatan Lifshitz, Elad Aaron, Shai Gordin:
Restoration of Fragmentary Babylonian Texts Using Recurrent Neural Networks. CoRR abs/2003.01912 (2020) - [i18]Aviv Navon, Idan Achituve, Haggai Maron, Gal Chechik, Ethan Fetaya:
Auxiliary Learning by Implicit Differentiation. CoRR abs/2007.02693 (2020) - [i17]Aviv Navon, Aviv Shamsian, Gal Chechik, Ethan Fetaya:
Learning the Pareto Front with Hypernetworks. CoRR abs/2010.04104 (2020) - [i16]Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, Haggai Maron:
On Size Generalization in Graph Neural Networks. CoRR abs/2010.08853 (2020) - [i15]Yochai Yemini, Ethan Fetaya, Haggai Maron, Sharon Gannot:
Position-Agnostic Multi-Microphone Speech Dereverberation. CoRR abs/2010.11875 (2020) - 2019
- [i14]Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman:
On the Universality of Invariant Networks. CoRR abs/1901.09342 (2019) - [i13]Dan Levi, Liran Gispan, Niv Giladi, Ethan Fetaya:
Evaluating and Calibrating Uncertainty Prediction in Regression Tasks. CoRR abs/1905.11659 (2019) - [i12]Ethan Fetaya, Jörn-Henrik Jacobsen, Richard S. Zemel:
Conditional Generative Models are not Robust. CoRR abs/1906.01171 (2019) - 2018
- [i11]Thomas N. Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard S. Zemel:
Neural Relational Inference for Interacting Systems. CoRR abs/1802.04687 (2018) - [i10]Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, Richard S. Zemel:
Reviving and Improving Recurrent Back-Propagation. CoRR abs/1803.06396 (2018) - [i9]KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan Fetaya, Raquel Urtasun, Richard S. Zemel, Xaq Pitkow:
Inference in Probabilistic Graphical Models by Graph Neural Networks. CoRR abs/1803.07710 (2018) - [i8]Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Matthew Might, Raquel Urtasun, Richard S. Zemel:
Neural Guided Constraint Logic Programming for Program Synthesis. CoRR abs/1809.02840 (2018) - [i7]Mengye Ren, Renjie Liao, Ethan Fetaya, Richard S. Zemel:
Incremental Few-Shot Learning with Attention Attractor Networks. CoRR abs/1810.07218 (2018) - 2017
- [i6]Oran Shayer, Dan Levi, Ethan Fetaya:
Learning Discrete Weights Using the Local Reparameterization Trick. CoRR abs/1710.07739 (2017) - 2016
- [i5]Ita Lifshitz, Ethan Fetaya, Shimon Ullman:
Human Pose Estimation using Deep Consensus Voting. CoRR abs/1603.08212 (2016) - 2015
- [i4]Ethan Fetaya, Shimon Ullman:
Learning Local Invariant Mahalanobis Distances. CoRR abs/1502.01176 (2015) - [i3]Ariel Jaffe, Ethan Fetaya, Boaz Nadler, Tingting Jiang, Yuval Kluger:
Unsupervised Ensemble Learning with Dependent Classifiers. CoRR abs/1510.05830 (2015) - 2014
- [i2]Ethan Fetaya, Ohad Shamir, Shimon Ullman:
Graph Approximation and Clustering on a Budget. CoRR abs/1406.2602 (2014) - 2011
- [i1]Ethan Fetaya:
Homological Error Correcting Codes and Systolic Geometry. CoRR abs/1108.2886 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:28 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint