default search action
Wittawat Jitkrittum
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2021
- [j3]Mijung Park, Margarita Vinaroz, Wittawat Jitkrittum:
ABCDP: Approximate Bayesian Computation with Differential Privacy. Entropy 23(8): 961 (2021) - 2014
- [j2]Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, Masashi Sugiyama:
High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso. Neural Comput. 26(1): 185-207 (2014) - 2013
- [j1]Wittawat Jitkrittum, Hirotaka Hachiya, Masashi Sugiyama:
Feature Selection via l1-Penalized Squared-Loss Mutual Information. IEICE Trans. Inf. Syst. 96-D(7): 1513-1524 (2013)
Conference and Workshop Papers
- 2024
- [c29]Lin Chen, Michal Lukasik, Wittawat Jitkrittum, Chong You, Sanjiv Kumar:
On Bias-Variance Alignment in Deep Models. ICLR 2024 - [c28]Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Language Model Cascades: Token-Level Uncertainty And Beyond. ICLR 2024 - [c27]Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, Neha Gupta, Sanjiv Kumar:
Learning to Reject Meets Long-tail Learning. ICLR 2024 - [c26]Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, Sanjiv Kumar:
Plugin estimators for selective classification with out-of-distribution detection. ICLR 2024 - [c25]Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer, Wittawat Jitkrittum, Veeranjaneyulu Sadhanala, Sadeep Jayasumana, Aditya Krishna Menon, Rob Fergus, Sanjiv Kumar:
USTAD: Unified Single-model Training Achieving Diverse Scores for Information Retrieval. ICML 2024 - 2023
- [c24]Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sanjiv Kumar:
When Does Confidence-Based Cascade Deferral Suffice? NeurIPS 2023 - 2022
- [c23]Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, Krikamol Muandet:
A Witness Two-Sample Test. AISTATS 2022: 1403-1419 - [c22]Patsorn Sangkloy, Wittawat Jitkrittum, Diyi Yang, James Hays:
A Sketch is Worth a Thousand Words: Image Retrieval with Text and Sketch. ECCV (38) 2022: 251-267 - [c21]Harikrishna Narasimhan, Wittawat Jitkrittum, Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar:
Post-hoc estimators for learning to defer to an expert. NeurIPS 2022 - 2021
- [c20]Jia-Jie Zhu, Wittawat Jitkrittum, Moritz Diehl, Bernhard Schölkopf:
Kernel Distributionally Robust Optimization: Generalized Duality Theorem and Stochastic Approximation. AISTATS 2021: 280-288 - [c19]Ankit Singh Rawat, Aditya Krishna Menon, Wittawat Jitkrittum, Sadeep Jayasumana, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
Disentangling Sampling and Labeling Bias for Learning in Large-output Spaces. ICML 2021: 8890-8901 - 2020
- [c18]Jen Ning Lim, Makoto Yamada, Wittawat Jitkrittum, Yoshikazu Terada, Shigeyuki Matsui, Hidetoshi Shimodaira:
More Powerful Selective Kernel Tests for Feature Selection. AISTATS 2020: 820-830 - [c17]Jia-Jie Zhu, Wittawat Jitkrittum, Moritz Diehl, Bernhard Schölkopf:
Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem. CDC 2020: 3457-3463 - [c16]Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, Krikamol Muandet:
Learning Kernel Tests Without Data Splitting. NeurIPS 2020 - [c15]Krikamol Muandet, Wittawat Jitkrittum, Jonas M. Kübler:
Kernel Conditional Moment Test via Maximum Moment Restriction. UAI 2020: 41-50 - [c14]Wittawat Jitkrittum, Heishiro Kanagawa, Bernhard Schölkopf:
Testing Goodness of Fit of Conditional Density Models with Kernels. UAI 2020: 221-230 - 2019
- [c13]Wittawat Jitkrittum, Patsorn Sangkloy, Muhammad Waleed Gondal, Amit Raj, James Hays, Bernhard Schölkopf:
Kernel Mean Matching for Content Addressability of GANs. ICML 2019: 3140-3151 - [c12]Jen Ning Lim, Makoto Yamada, Bernhard Schölkopf, Wittawat Jitkrittum:
Kernel Stein Tests for Multiple Model Comparison. NeurIPS 2019: 2240-2250 - [c11]Song Liu, Takafumi Kanamori, Wittawat Jitkrittum, Yu Chen:
Fisher Efficient Inference of Intractable Models. NeurIPS 2019: 8790-8800 - 2018
- [c10]Wittawat Jitkrittum, Heishiro Kanagawa, Patsorn Sangkloy, James Hays, Bernhard Schölkopf, Arthur Gretton:
Informative Features for Model Comparison. NeurIPS 2018: 816-827 - 2017
- [c9]Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton:
An Adaptive Test of Independence with Analytic Kernel Embeddings. ICML 2017: 1742-1751 - [c8]Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton:
A Linear-Time Kernel Goodness-of-Fit Test. NIPS 2017: 262-271 - 2016
- [c7]Mijung Park, Wittawat Jitkrittum, Dino Sejdinovic:
K2-ABC: Approximate Bayesian Computation with Kernel Embeddings. AISTATS 2016: 398-407 - [c6]Wittawat Jitkrittum, Zoltán Szabó, Kacper P. Chwialkowski, Arthur Gretton:
Interpretable Distribution Features with Maximum Testing Power. NIPS 2016: 181-189 - 2015
- [c5]Mijung Park, Wittawat Jitkrittum, Ahmad Qamar, Zoltán Szabó, Lars Buesing, Maneesh Sahani:
Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM). NIPS 2015: 154-162 - [c4]Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess, S. M. Ali Eslami, Balaji Lakshminarayanan, Dino Sejdinovic, Zoltán Szabó:
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages. UAI 2015: 405-414 - 2013
- [c3]Gang Niu, Wittawat Jitkrittum, Bo Dai, Hirotaka Hachiya, Masashi Sugiyama:
Squared-loss Mutual Information Regularization: A Novel Information-theoretic Approach to Semi-supervised Learning. ICML (3) 2013: 10-18 - 2008
- [c2]Choochart Haruechaiyasak, Wittawat Jitkrittum, Chatchawal Sangkeettrakarn, Chaianun Damrongrat:
Implementing News Article Category Browsing Based on Text Categorization Technique. Web Intelligence/IAT Workshops 2008: 143-146 - 2007
- [c1]Choochart Haruechaiyasak, Chatchawal Sangkeettrakarn, Wittawat Jitkrittum:
Managing Offline Educational Web Contents with Search Engine Tools. ICADL 2007: 444-453
Informal and Other Publications
- 2024
- [i34]Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Language Model Cascades: Token-level uncertainty and beyond. CoRR abs/2404.10136 (2024) - [i33]Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta, Aditya Krishna Menon, Sanjiv Kumar:
Faster Cascades via Speculative Decoding. CoRR abs/2405.19261 (2024) - [i32]Congchao Wang, Sean Augenstein, Keith Rush, Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Aditya Krishna Menon, Alec Go:
Cascade-Aware Training of Language Models. CoRR abs/2406.00060 (2024) - 2023
- [i31]Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer, Sadeep Jayasumana, Veeranjaneyulu Sadhanala, Wittawat Jitkrittum, Aditya Krishna Menon, Rob Fergus, Sanjiv Kumar:
EmbedDistill: A Geometric Knowledge Distillation for Information Retrieval. CoRR abs/2301.12005 (2023) - [i30]Harikrishna Narasimhan, Aditya Krishna Menon, Wittawat Jitkrittum, Sanjiv Kumar:
Learning to reject meets OOD detection: Are all abstentions created equal? CoRR abs/2301.12386 (2023) - [i29]Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sanjiv Kumar:
When Does Confidence-Based Cascade Deferral Suffice? CoRR abs/2307.02764 (2023) - [i28]Lin Chen, Michal Lukasik, Wittawat Jitkrittum, Chong You, Sanjiv Kumar:
It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep Models. CoRR abs/2310.09250 (2023) - 2022
- [i27]Wittawat Jitkrittum, Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar:
ELM: Embedding and Logit Margins for Long-Tail Learning. CoRR abs/2204.13208 (2022) - [i26]Antonin Schrab, Wittawat Jitkrittum, Zoltán Szabó, Dino Sejdinovic, Arthur Gretton:
Discussion of 'Multiscale Fisher's Independence Test for Multivariate Dependence'. CoRR abs/2206.11142 (2022) - [i25]Patsorn Sangkloy, Wittawat Jitkrittum, Diyi Yang, James Hays:
A Sketch Is Worth a Thousand Words: Image Retrieval with Text and Sketch. CoRR abs/2208.03354 (2022) - 2021
- [i24]Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, Krikamol Muandet:
An Optimal Witness Function for Two-Sample Testing. CoRR abs/2102.05573 (2021) - [i23]Ankit Singh Rawat, Aditya Krishna Menon, Wittawat Jitkrittum, Sadeep Jayasumana, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
Disentangling Sampling and Labeling Bias for Learning in Large-Output Spaces. CoRR abs/2105.05736 (2021) - [i22]Wittawat Jitkrittum, Michal Lukasik, Ananda Theertha Suresh, Felix X. Yu, Gang Wang:
HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party Computation. CoRR abs/2110.15440 (2021) - 2020
- [i21]Krikamol Muandet, Wittawat Jitkrittum, Jonas M. Kübler:
Kernel Conditional Moment Test via Maximum Moment Restriction. CoRR abs/2002.09225 (2020) - [i20]Wittawat Jitkrittum, Heishiro Kanagawa, Bernhard Schölkopf:
Testing Goodness of Fit of Conditional Density Models with Kernels. CoRR abs/2002.10271 (2020) - [i19]Jia-Jie Zhu, Wittawat Jitkrittum, Moritz Diehl, Bernhard Schölkopf:
Worst-Case Risk Quantification under Distributional Ambiguity using Kernel Mean Embedding in Moment Problem. CoRR abs/2004.00166 (2020) - [i18]Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf, Krikamol Muandet:
Learning Kernel Tests Without Data Splitting. CoRR abs/2006.02286 (2020) - [i17]Jia-Jie Zhu, Wittawat Jitkrittum, Moritz Diehl, Bernhard Schölkopf:
Kernel Distributionally Robust Optimization. CoRR abs/2006.06981 (2020) - 2019
- [i16]Arash Mehrjou, Wittawat Jitkrittum, Bernhard Schölkopf, Krikamol Muandet:
Witnessing Adversarial Training in Reproducing Kernel Hilbert Spaces. CoRR abs/1901.09206 (2019) - [i15]Wittawat Jitkrittum, Patsorn Sangkloy, Muhammad Waleed Gondal, Amit Raj, James Hays, Bernhard Schölkopf:
Kernel Mean Matching for Content Addressability of GANs. CoRR abs/1905.05882 (2019) - [i14]Heishiro Kanagawa, Wittawat Jitkrittum, Lester Mackey, Kenji Fukumizu, Arthur Gretton:
A Kernel Stein Test for Comparing Latent Variable Models. CoRR abs/1907.00586 (2019) - [i13]Mijung Park, Wittawat Jitkrittum:
ABCDP: Approximate Bayesian Computation Meets Differential Privacy. CoRR abs/1910.05103 (2019) - [i12]Jen Ning Lim, Makoto Yamada, Wittawat Jitkrittum, Yoshikazu Terada, Shigeyuki Matsui, Hidetoshi Shimodaira:
More Powerful Selective Kernel Tests for Feature Selection. CoRR abs/1910.06134 (2019) - [i11]Jen Ning Lim, Makoto Yamada, Bernhard Schölkopf, Wittawat Jitkrittum:
Kernel Stein Tests for Multiple Model Comparison. CoRR abs/1910.12252 (2019) - 2018
- [i10]Song Liu, Wittawat Jitkrittum, Carl Henrik Ek:
Model Inference with Stein Density Ratio Estimation. CoRR abs/1805.07454 (2018) - [i9]Wittawat Jitkrittum, Heishiro Kanagawa, Patsorn Sangkloy, James Hays, Bernhard Schölkopf, Arthur Gretton:
Informative Features for Model Comparison. CoRR abs/1810.11630 (2018) - 2017
- [i8]Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton:
A Linear-Time Kernel Goodness-of-Fit Test. CoRR abs/1705.07673 (2017) - 2016
- [i7]Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski, Arthur Gretton:
Interpretable Distribution Features with Maximum Testing Power. CoRR abs/1605.06796 (2016) - [i6]Wittawat Jitkrittum, Zoltán Szabó, Arthur Gretton:
An Adaptive Test of Independence with Analytic Kernel Embeddings. CoRR abs/1610.04782 (2016) - 2015
- [i5]Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess:
Passing Expectation Propagation Messages with Kernel Methods. CoRR abs/1501.00375 (2015) - [i4]Mijung Park, Wittawat Jitkrittum, Dino Sejdinovic:
K2-ABC: Approximate Bayesian Computation with Kernel Embeddings. CoRR abs/1502.02558 (2015) - [i3]Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess, S. M. Ali Eslami, Balaji Lakshminarayanan, Dino Sejdinovic, Zoltán Szabó:
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages. CoRR abs/1503.02551 (2015) - 2012
- [i2]Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Masashi Sugiyama:
High-Dimensional Feature Selection by Feature-Wise Non-Linear Lasso. CoRR abs/1202.0515 (2012) - [i1]Wittawat Jitkrittum, Hirotaka Hachiya, Masashi Sugiyama:
Feature Selection via L1-Penalized Squared-Loss Mutual Information. CoRR abs/1210.1960 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-04 01:24 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint