default search action
CLEF 2019: Lugano, Switzerland - Working Notes
- Linda Cappellato, Nicola Ferro, David E. Losada, Henning Müller:
Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland, September 9-12, 2019. CEUR Workshop Proceedings 2380, CEUR-WS.org 2019
CENTRE@CLEF - CLEF/NTCIR/TREC Reproducibility
- Nicola Ferro, Norbert Fuhr, Maria Maistro, Tetsuya Sakai, Ian Soboroff:
CENTRE@CLEF2019: Overview of the Replicability and Reproducibility Tasks. - Timo Breuer, Philipp Schaer:
Replicability and Reproducibility of Automatic Routing Runs.
CheckThat! - Automatic Identification and Verification of Claims
- Pepa Atanasova, Preslav Nakov, Georgi Karadzhov, Mitra Mohtarami, Giovanni Da San Martino:
Overview of the CLEF-2019 CheckThat! Lab: Automatic Identification and Verification of Claims. Task 1: Check-Worthiness. - Maram Hasanain, Reem Suwaileh, Tamer Elsayed, Alberto Barrón-Cedeño, Preslav Nakov:
Overview of the CLEF-2019 CheckThat! Lab: Automatic Identification and Verification of Claims. Task 2: Evidence and Factuality. - Bahadir Altun, Mücahid Kutlu:
TOBB-ETU at CLEF 2019: Prioritizing Claims Based on Check-Worthiness. - Lucia Georgiana Coca, Ciprian-Gabriel Cusmuliuc, Adrian Iftene:
CheckThat! 2019 UAICS. - Rudra Dhar, Subhabrata Dutta, Dipankar Das:
A Hybrid Model to Rank Sentences for Check-worthiness. - Luca Favano, Mark J. Carman, Pier Luca Lanzi:
TheEarthIsFlat's Submission to CLEF'19CheckThat! Challenge. - Bilal Ghanem, Goran Glavas, Anastasia Giachanou, Simone Paolo Ponzetto, Paolo Rosso, Francisco M. Rangel Pardo:
UPV-UMA at CheckThat! Lab: Verifying Arabic Claims using a Cross Lingual Approach. - Jakub Gasior, Piotr Przybyla:
The IPIPAN Team Participation in the Check-Worthiness Task of the CLEF2019 CheckThat! Lab. - Casper Hansen, Christian Hansen, Jakob Grue Simonsen, Christina Lioma:
Neural Weakly Supervised Fact Check-Worthiness Detection with Contrastive Sampling-Based Ranking Loss. - Fatima Haouari, Zien Sheikh Ali, Tamer Elsayed:
bigIR at CLEF 2019: Automatic Verification of Arabic Claims over the Web. - Ritesh Kumar, Shivansh Prakash, Shashank Kumar, Rajendra Pamula:
Check That! Automatic Identification and Verification of Claims: IIT(ISM) @CLEF'19 Check Worthiness. - Salar Mohtaj, Tilo Himmelsbach, Vinicius Woloszyn, Sebastian Möller:
Using External Knowledge Bases and Coreference Resolution for Detecting Check-Worthy Statements. - Ting Su, Craig Macdonald, Iadh Ounis:
Entity Detection for Check-worthiness Prediction: Glasgow Terrier at CLEF CheckThat! 2019. - Ibtissam Touahri, Azzeddine Mazroui:
Automatic Verification of Political Claims Based on Morphological Features.
CLEF eHealth
- Evangelos Kanoulas, Dan Li, Leif Azzopardi, René Spijker:
CLEF 2019 Technology Assisted Reviews in Empirical Medicine Overview. - Mariana L. Neves, Daniel Butzke, Antje Dörendahl, Nora Leich, Benedikt Hummel, Gilbert Schönfelder, Barbara Grune:
Overview of the CLEF eHealth 2019 Multilingual Information Extraction. - Nizar Ahmed, Aliriza Aribas, Adil Alpkocak:
DEMIR at CLEF eHealth 2019: Information Retrieval based Classification of Animal Experiments Summaries. - Amal Alharbi, Mark Stevenson:
Ranking Studies for Systematic Reviews Using Query Adaptation: University of Sheffield's Approach to CLEF eHealth 2019 Task 2. - Saadullah Amin, Guenter Neumann, Katherine Dunfield, Anna Vechkaeva, Kathryn Annette Chapman, Morgan Kelly Wixted:
MLT-DFKI at CLEF eHealth 2019: Multi-label Classification of ICD-10 Codes with BERT. - Giorgio Maria Di Nunzio:
Classification of Animal Experiments: A Reproducible Study. IMS Unipd at CLEF eHealth Task 1. - Giorgio Maria Di Nunzio:
A Distributed Effort Approach for Systematic Reviews. IMS Unipd At CLEF 2019 eHealth Task 2. - S. Kayalvizhi, D. Thenmozhi, Chandrabose Aravindan:
Deep Learning Approach for Semantic Indexing of Animal Experiments Summaries in German Language. - Dan Li, Evangelos Kanoulas:
Automatic Thresholding by Sampling Documents and Estimating Recall. - Mario Sänger, Leon Weber, Madeleine Kittner, Ulf Leser:
Classifying German Animal Experiment Summaries with Multi-lingual BERT at CLEF eHealth 2019 Task 1.
eRisk - Early Risk Prediction on the Internet
- David E. Losada, Fabio Crestani, Javier Parapar:
Overview of eRisk at CLEF 2019: Early Risk Prediction on the Internet (extended overview). - Pegah Abed-Esfahani, Derek Howard, Marta Maslej, Sejal Patel, Vamika Mann, Sarah Goegan, Leon French:
Transfer Learning for Depression: Early Detection and Severity Prediction from Social Media Postings. - Mario Ezra Aragón, Adrián Pastor López-Monroy, Manuel Montes-y-Gómez:
INAOE-CIMAT at eRisk 2019: Detecting Signs of Anorexia using Fine-Grained Emotions. - Sergio Gastón Burdisso, Marcelo Errecalde, Manuel Montes-y-Gómez:
UNSL at eRisk 2019: a Unified Approach for Anorexia, Self-harm and Depression Detection in Social Media. - Elena Fano, Jussi Karlgren, Joakim Nivre:
Uppsala University and Gavagai at CLEF eRISK: Comparing Word Embedding Models. - Razan Masood, Faneva Ramiandrisoa, Ahmet Aker:
UDE at eRisk 2019: Early Risk Prediction on the Internet. - Elham Mohammadi, Hessam Amini, Leila Kosseim:
Quick and (maybe not so) Easy Detection of Anorexia in Social Media Posts. - Nona Naderi, Julien Gobeill, Douglas Teodoro, Emilie Pasche, Patrick Ruch:
A Baseline Approach for Early Detection of Signs of Anorexia and Self-harm in Reddit Posts. - Rosa María Ortega-Mendoza, Delia Irazú Hernández Farías, Manuel Montes-y-Gómez:
LTL-INAOE's Participation at eRisk 2019: Detecting Anorexia in Social Media through Shared Personal Information. - Flor Miriam Plaza del Arco, Pilar López-Úbeda, Manuel Carlos Díaz-Galiano, Luis Alfonso Ureña López, María Teresa Martín Valdivia:
Integrating UMLS for Early Detection of Sings of Anorexia. - Waleed Ragheb, Jérôme Azé, Sandra Bringay, Maximilien Servajean:
Attentive Multi-stage Learning for Early Risk Detection of Signs of Anorexia and Self-harm on Social Media. - Akshaya Ranganathan, Haritha A, D. Thenmozhi, Chandrabose Aravindan:
Early Detection of Anorexia using RNN-LSTM and SVM Classifiers. - Pablo Ráez García Retamero, Isabel Segura-Bedmar:
Early Risk Prediction by means of DeepLearning. - Paul Van Rijen, Douglas Teodoro, Nona Naderi, Luc Mottin, Julien Knafou, Matt Jeffryes, Patrick Ruch:
A Data-Driven Approach for Measuring the Severity of the Signs of Depression using Reddit Posts. - Alina Trifan, José Luís Oliveira:
BioInfo@UAVR at eRisk 2019: delving into Social Media Texts for the Early Detection of Mental and Food Disorders.
LifeCLEF - Biodiversity Identification and Prediction
- Hervé Goëau, Pierre Bonnet, Alexis Joly:
Overview of LifeCLEF Plant Identification Task 2019: diving into Data Deficient Tropical Countries. - Stefan Kahl, Fabian-Robert Stöter, Hervé Goëau, Hervé Glotin, Bob Planqué, Willem-Pier Vellinga, Alexis Joly:
Overview of BirdCLEF 2019: Large-Scale Bird Recognition in Soundscapes. - Christophe Botella, Maximilien Servajean, Pierre Bonnet, Alexis Joly:
Overview of GeoLifeCLEF 2019: Plant Species Prediction using Environment and Animal Occurrences. - Costel-Sergiu Atodiresei, Adrian Iftene:
Location-Based Species Recommendation - GeoLifeCLEF 2019 Challenge. - Jisheng Bai, Bolun Wang, Chen Chen, Jianfeng Chen, Zhonghua Fu:
Inception-v3 Based Method of LifeCLEF 2019 Bird Recognition. - Sophia Chulif, Kiat Jing Heng, Teck Wei Chan, Mohammad Abdullah Al Monnaf, Yang Loong Chang:
Plant Identication on Amazonian and Guiana Shield Flora: NEUON submission to LifeCLEF 2019 Plant. - Nanda H. Krishna, Praveen Kumar R, Ram Kaushik R, Palaniappan Mirunalini, Chandrabose Aravindan, S. M. Jaisakthi:
Species Recommendation using Machine Learning - GeoLifeCLEF 2019. - Chih-Yuan Koh, Jaw-Yuan Chang, Chiang-Lin Tai, Da-Yo Huang, Han-Hsing Hsieh, Yi-Wen Liu:
Bird Sound Classification Using Convolutional Neural Networks. - Mario Lasseck:
Bird Species Identification in Soundscapes. - Pascal Monestiez, Christophe Botella:
Species Recommendation using Intensity Models and Sampling Bias Correction (GeoLifeCLEF 2019: Lof_of_Lof team). - Mathilde Negri, Maximilien Servajean, Benjamin Deneu, Alexis Joly:
Location-Based Plant Species Prediction Using A CNN Model Trained On Several Kingdoms - Best Method Of GeoLifeCLEF 2019 Challenge. - Dat Nguyen Thanh, Georges Quénot, Lorraine Goeuriot:
Non-local DenseNet for Plant CLEF 2019 Contest. - Lukás Picek, Milan Sulc, Jiri Matas:
Recognition of the Amazonian flora by InceptionNetworks with Test-time Class Prior Estimation. - Sara Si-Moussi, Mickael Hedde, Wilfried Thuiller:
Plant Recommendation using Environment and Biotic Associations.
ImageCLEF - Multimedia Retrieval in CLEF
- Yashin Dicente Cid, Vitali Liauchuk, Dzmitri Klimuk, Aleh Tarasau, Vassili Kovalev, Henning Müller:
Overview of ImageCLEFtuberculosis 2019 - Automatic CT-based Report Generation and Tuberculosis Severity Assessment. - Jon Chamberlain, Antonio Campello, Jessica P. Wright, Louis G. Clift, Adrian F. Clark, Alba García Seco de Herrera:
Overview of ImageCLEFcoral 2019 Task. - Duc-Tien Dang-Nguyen, Luca Piras, Michael Riegler, Liting Zhou, Mathias Lux, Minh-Triet Tran, Tu-Khiem Le, Van-Tu Ninh, Cathal Gurrin:
Overview of ImageCLEFlifelog 2019: Solve My Life Puzzle and Lifelog Moment Retrieval. - Obioma Pelka, Christoph M. Friedrich, Alba García Seco de Herrera, Henning Müller:
Overview of the ImageCLEFmed 2019 Concept Detection Task. - Konstantinos Karampidis, Nikos Vasilopoulos, Carlos Cuevas, Carlos Roberto del-Blanco, Ergina Kavallieratou, Narciso García:
Overview of the ImageCLEFsecurity 2019: File Forgery Detection Tasks. - Asma Ben Abacha, Sadid A. Hasan, Vivek V. Datla, Joey Liu, Dina Demner-Fushman, Henning Müller:
VQA-Med: Overview of the Medical Visual Question Answering Task at ImageCLEF 2019. - Aisha Al-Sadi, Bashar Talafha, Mahmoud Al-Ayyoub, Yaser Jararweh, Fumie Costen:
JUST at ImageCLEF 2019 Visual Question Answering in the Medical Domain. - Imane Allaouzi, Mohamed Ben Ahmed, Badr Benamrou:
An Encoder-Decoder Model for Visual Question Answering in the Medical Domain. - João Rafael Almeida, Pedro Freire, Olga Fajarda, José Luís Oliveira:
A Weighted Rule-Based Model for File Forgery Detection: UA.PT Bioinformatics at ImageCLEF 2019. - Mohit Bansal, Tanmay Gadgil, Rishi Shah, Parag Verma:
Medical Visual Question Answering at Image CLEF 2019- VQA Med. - Fatma Ben Abdallah, Ghada Feki, Anis Ben Ammar, Chokri Ben Amar:
Big Data For Lifelog Moments Retrieval Improvement. - Kirill Bogomasov, Daniel Braun, Andreas Burbach, Ludmila Himmelspach, Stefan Conrad:
Feature and Deep Learning Based Approaches for Automatic Report Generation and Severity Scoring of Lung Tuberculosis from CT Images. - Kirill Bogomasov, Philipp Grawe, Stefan Conrad:
A two-staged Approach for Localization and Classification of Coral Reef Structures and Compositions. - Rabia Bounaama, Mohammed El Amine Abderrahim:
Tlemcen University at ImageCLEF 2019 Visual Question Answering Task. - Cristina M. R. Caridade, André R. S. Marçal:
Automatic Classification of Coral Images using Color and Textures. - Minh-Son Dao, Anh-Khoa Vo, Trong-Dat Phan, Koji Zettsu:
BIDAL@imageCLEFlifelog2019: The Role of Content and Context of Daily Activities in Insights from Lifelogs. - Yashin Dicente Cid, Henning Müller:
Lung Graph-Model Classification with SVM and CNN for Tuberculosis Severity Assessment and Automatic CT Report Generation. - Mihai Dogariu, Bogdan Ionescu:
Multimedia Lab @ ImageCLEF 2019 Lifelog Moment Retrieval Task. - Amilcare Gentili:
ImageCLEF2019: Tuberculosis - Severity Scoring and CT Report with Neural Networks, Transfer Learning and Ensembling. - Amilcare Gentili, Paolo Gentili:
ImageCLEF2019 Security - Forged File Discovery and Stego Image Discovery Tasks. - Ana Jorge Gonçalves, Eduardo Pinho, Carlos Costa:
Informative and Intriguing Visual Features: UA.PT Bioinformatics in ImageCLEF Caption 2019. - Zhen Guo, Xuwen Wang, Yu Zhang, Jiao Li:
ImageSem at ImageCLEFmed Caption 2019 Task: a Two-stage Medical Concept Detection Strategy. - Abdelkader Hamadi, Noreddine Belhadj Cheikh, Yamina Zouatine, Si Mohamed Bekkai Menad, Mohamed Redha Djebbara:
ImageCLEF 2019: Deep Learning for Tuberculosis CT Image Analysis. - Trung-Hieu Hoang, Mai-Khiem Tran, Vinh-Tiep Nguyen, Minh-Triet Tran:
Solving Life Puzzle with Visual Context-based Clustering and Habit Reference. - Siarhei Kazlouski:
ImageCLEF 2019: CT Image Analysis for TB Severity Scoring and CT Report Generation using Autoencoded Image Features. - Tomasz Kornuta, Deepta Rajan, Chaitanya Shivade, Alexis Asseman, Ahmet S. Ozcan:
Leveraging Medical Visual Question Answering with Supporting Facts. - Vasiliki Kougia, John Pavlopoulos, Ion Androutsopoulos:
AUEB NLP Group at ImageCLEFmed Caption 2019. - Nguyen-Khang Le, Dieu-Hien Nguyen, Vinh-Tiep Nguyen, Minh-Triet Tran:
Lifelog Moment Retrieval with Advanced Semantic Extraction and Flexible Moment Visualization for Exploration. - Vitali Liauchuk:
ImageCLEF 2019: Projection-based CT Image Analysis for TB Severity Scoring and CT Report Generation. - Shengyan Liu, Xiaozhi Ou, Jiao Che, Xiaobing Zhou, Haiyan Ding:
An Xception-GRU Model for Visual Question Answering in the Medical Domain. - Fernando Llopis, Andrés Fuster Guilló, Jorge Azorín López, Irene Llopis:
Using improved Optical Flow Model to Detect Tuberculosis. - Sam Maksoud, Arnold Wiliem, Brian C. Lovell:
Recurrent Attention Networks for Medical Concept Prediction. - Naoya Mamada:
Image Steganalysis with Very Deep Convolutional Neural Networks. - Abdela Ahmed Mossa, Abdulkerim Mohammed Yibre, Ulus Çevik:
Multi-View CNN with MLP for Diagnosing Tuberculosis Patients Using CT Scans and Clinically Relevant Metadata. - Van-Tu Ninh, Tu-Khiem Le, Liting Zhou, Luca Piras, Michael Riegler, Mathias Lux, Minh-Triet Tran, Cathal Gurrin, Duc-Tien Dang-Nguyen:
LIFER 2.0: Discovering Personal Lifelog Insights using an Interactive Lifelog Retrieval System. - Anup Pattnaik, Sarthak Kanodia, Rahul Chowdhury, Smita Mohanty:
Predicting Tuberculosis Related Lung Deformities from CT Scan Images Using 3D CNN. - Ricardo F. Ribeiro, António J. R. Neves, José Luís Oliveira:
UA.PT Bioinformatics at ImageCLEF 2019: Lifelog Moment Retrieval based on Image Annotation and Natural Language Processing. - Kavitha S, Nandhinee P. R, Harshana S, Jahnavi Srividya S, Harrinei K:
ImageCLEF 2019: A 2D Convolutional Neural Network Approach for Severity Scoring of Lung Tuberculosis using CT Images. - S. M. Jaisakthi, Palaniappan Mirunalini, Chandrabose Aravindan:
Coral Reef Annotation and Localization using Faster R-CNN. - Lei Shi, Feifan Liu, Max P. Rosen:
Deep Multimodal Learning for Medical Visual Question Answering. - Sonit Singh, Sarvnaz Karimi, Kevin Ho-Shon, Len Hamey:
Biomedical Concept Detection in Medical Images: MQ-CSIRO at 2019 ImageCLEFmed Caption Task. - Priyanshu Sinha, Saptarshi Purkayastha, Judy Gichoya:
Full Training versus Fine Tuning for Radiology Images Concept Detection Task for the ImageCLEF 2019 Challenge. - Avi Turner, Assaf Spanier:
LSTM in VQA-Med, is It Really Needed? JCE Study on the ImageCLEF 2019 Dataset. - M. Srinivas, Akshay Nayak, Abhishek Bhatt:
Forged File Detection and Steganographic content Identification (FFDASCI) using Deep Learning Techniques. - Aljoscha Steffens, Antonio Campello, James Ravenscroft, Adrian F. Clark, Hani Hagras:
Deep Segmentation: using Deep Convolutional Networks for Coral Reef pixel-wise Parsing. - Augustus Tabarcea, Valentin Rosca, Adrian Iftene:
ImageCLEFmed Tuberculosis 2019: Predicting CT Scans Severity Scores using Stage-Wise Boosting in Low-Resource Environments. - Stefan Taubert, Stefan Kahl, Danny Kowerko, Maximilian Eibl:
Automated Lifelog Moment Retrieval based on Image Segmentation and Similarity Scores. - Abhishek Thanki, Krishnamoorthi Makkithaya:
MIT Manipal at ImageCLEF 2019 Visual Question Answering in Medical Domain. - Maxime Tournadre, Guillaume Dupont, Vincent Pauwels, Bezeid Cheikh Mohamed Lmami, Alexandru-Lucian Gînsca:
A Multimedia Modular Approach to Lifelog Moment Retrieval. - Minh H. Vu, Raphael Sznitman, Tufve Nyholm, Tommy Löfstedt:
Ensemble of Streamlined Bilinear Visual Question Answering Models for the ImageCLEF 2019 Challenge in the Medical Domain. - Xinyi Wang, Ningning Liu:
AI600 Lab at ImageCLEF 2019 Concept Detection Task. - Jing Xu, Wei Liu, Chao Liu, Yu Wang, Ying Chi, Xuansong Xie, Xian-Sheng Hua:
Concept Detection based on Multi-label Classification and Image Captioning Approach - DAMO at ImageCLEF 2019. - Xin Yan, Lin Li, Chulin Xie, Jun Xiao, Lin Gu:
Zhejiang University at ImageCLEF 2019 Visual Question Answering in the Medical Domain. - Pengfei Zhou, Cong Bai, Jie Xia:
ZJUTCVR Team at ImageCLEFlifelog2019 Lifelog Moment Retrieval Task. - Yangyang Zhou, Xin Kang, Fuji Ren:
TUA1 at ImageCLEF 2019 VQA-Med: a Classification and Generation Model based on Transfer Learning. - Hasib Zunair, Aimon Rahman, Nabeel Mohammed:
Estimating Severity from CT Scans of Tuberculosis Patients using 3D Convolutional Nets and Slice Selection.
PAN Lab on Digital Text Forensics and Stylometry
- Matti Wiegmann, Benno Stein, Martin Potthast:
Overview of the Celebrity Profiling Task at PAN 2019. - Eva Zangerle, Michael Tschuggnall, Günther Specht, Benno Stein, Martin Potthast:
Overview of the Style Change Detection Task at PAN 2019. - Francisco M. Rangel Pardo, Paolo Rosso:
Overview of the 7th Author Profiling Task at PAN 2019: Bots and Gender Profiling in Twitter. - Mike Kestemont, Efstathios Stamatatos, Enrique Manjavacas, Walter Daelemans, Martin Potthast, Benno Stein:
Overview of the Cross-domain Authorship Attribution Task at PAN 2019. - Shaina Ashraf, Omer Javed, Muhammad Adeel, Haider Iqbal, Rao Muhammad Adeel Nawab:
Bots and Gender Prediction Using Language Independent Stylometry-based Approach. - Hamed Babaei Giglou, Mostafa Rahgouy, Taher Rahgooy, Mohammad Karami Sheykhlan, Erfan Mohammadzadeh:
Author Profiling: Bot and Gender Prediction using a Multi-Aspect Ensemble Approach. - Andrea Bacciu, Massimo La Morgia, Alessandro Mei, Eugenio Nerio Nemmi, Valerio Neri, Julinda Stefa:
Bot and Gender Detection of Twitter Accounts Using Distortion and LSA. - Andrea Bacciu, Massimo La Morgia, Alessandro Mei, Eugenio Nerio Nemmi, Valerio Neri, Julinda Stefa:
Cross-Domain Authorship Attribution Combining Instance Based and Profile-Based Features. - Martijn Bartelds, Wietse de Vries:
Improving Cross-domain Authorship Attribution by Combining Lexical and Syntactic Features. - Angelo Basile:
An Open-Vocabulary Approach to Authorship Attribution. - Flora Bolonyai, Jakab Buda, Eszter Katona:
Bot Or Not: A Two-Level Approach In Author Profiling. - Rabia Bounaama, Mohammed El Amine Abderrahim:
Tlemcen University: Bots and Gender Profiling Task. - Maximilian Bryan, J. Nathanael Philipp:
Unsupervised Pretraining for Text Classification using Siamese Transfer Learning. - Andrea Cimino, Felice Dell'Orletta:
A Hierarchical Neural Network Approach for Bots and Gender Profiling. - José Eleandro Custódio, Ivandré Paraboni:
Multi-channel Open-set Cross-domain Authorship Attribution. - Rafael Felipe Sandroni Dias, Ivandré Paraboni:
Combined CNN+RNN Bot and Gender Profiling. - Daniel Yacob Espinosa, Helena Gómez-Adorno, Grigori Sidorov:
Bots and Gender Profiling using Character Bigrams. - Tiziano Fagni, Maurizio Tesconi:
Profiling Twitter Users Using Autogenerated Features Invariant to Data Distribution. - Johan Fernquist:
A Four Feature Types Approach for Detecting Bot and Gender of Twitter Users. - Michael Färber, Agon Qurdina, Lule Ahmedi:
Identifying Twitter Bots Using a Convolutional Neural Network. - Pablo Gamallo, Sattam Almatarneh:
Naive-Bayesian Classification for Bot Detection in Twitter. - Anastasia Giachanou, Bilal Ghanem:
Bot and Gender Detection using Textual and Stylistic Information. - Flurin Gishamer:
Using Hashtags and POS-Tags for Author Profiling. - Régis Goubin, Dorian Lefeuvre, Alaa Alhamzeh, Jelena Mitrovic, Elöd Egyed-Zsigmond, Leopold Ghemmogne Fossi:
Bots and Gender Profiling using a Multi-layer Architecture. - Yaakov HaCohen-Kerner, Natan Manor, Michael Goldmeier:
Bots and Gender Profiling of Tweets using Word and Character N-Grams. - Oren Halvani, Philipp Marquardt:
An Unsophisticated Neural Bots and Gender Profiling System. - Catherine Ikae, Sukunya Nath, Jacques Savoy:
UniNE at PAN-CLEF 2019: Bots and Gender Task. - Víctor Jiménez-Villar, Javier Sánchez-Junquera, Manuel Montes-y-Gómez, Luis Villaseñor Pineda, Simone Paolo Ponzetto:
Bots and Gender Profiling using Masking Techniques. - Fredrik Johansson:
Supervised Classification of Twitter Accounts Based on Textual Content of Tweets. - Fredrik Johansson, Tim Isbister:
FOI Cross-Domain Authorship Attribution for Criminal Investigations. - Youngjun Joo, Inchon Hwang:
Author Profiling on Social Media: An Ensemble Learning Approach using Various Features. - Dijana Kosmajac, Vlado Keselj:
Twitter User Profiling: Bot and Gender Identification. - György Kovács, Vanda Balogh, Purvanshi Mehta, Kumar Shridhar, Pedro Alonso, Marcus Liwicki:
Author Profiling using Semantic and Syntactic Features. - Jesus López-Santillán, Luis Carlos González-Gurrola, Manuel Montes-y-Gómez, Graciela Ramírez Alonso, Olanda Prieto-Ordaz:
An Evolutionary Approach to Build User Representations for Profiling of Bots and Humans in Twitter. - Asad Mahmood, Padmini Srinivasan:
Twitter Bots and Gender Detection using Tf-idf. - Matej Martinc, Blaz Skrlj, Senja Pollak:
Who is Hot and Who is Not? Profiling Celebs on Twitter. - Matej Martinc, Blaz Skrlj, Senja Pollak:
Fake or Not: Distinguishing between Bots, Males and Females. - Carolina Martín del Campo Rodríguez, Daniel Alejandro Pérez Alvarez, Christian Efraín Maldonado Sifuentes, Grigori Sidorov, Ildar Z. Batyrshin, Alexander F. Gelbukh:
Authorship Attribution through Punctuation n-grams and Averaged Combination of SVM. - Luis Gabriel Moreno-Sandoval, Edwin A. Puertas Del Castillo, Flor Miriam Plaza del Arco, Alexandra Pomares Quimbaya, Jorge Andrés Alvarado-Valencia, Luis Alfonso Ureña López:
Celebrity Profiling on Twitter using Sociolinguistic Features. - Lukas Muttenthaler, Gordon Lucas, Janek Amann:
Authorship Attribution in Fan-fictional Texts given Variable Length Character and Word n-grams. - Sukanya Nath:
Style Change Detection by Threshold Based and Window Merge Clustering Methods. - Rodrigo Ribeiro Oliveira, Cláudio Moisés Valiense de Andrade, José Solenir Lima Figuerêdo, João B. Rocha-Junior, Rodrigo Tripodi Calumby, Iago Machado da Conceição Silva, Almir Moreira da Silva Neto:
Bot and Gender Identification: Textual Analysis of Tweets. - Cristian Onose, Claudiu-Marcel Nedelcu, Dumitru-Clementin Cercel, Stefan Trausan-Matu:
A Hierarchical Attention Network for Bots and Gender Profiling. - Björn Pelzer:
Celebrity Profiling with Transfer Learning. - Juraj Petrík, Daniela Chudá:
Bots and Gender Profiling with Convolutional Hierarchical Recurrent Neural Network. - Juraj Petrík, Daniela Chudá:
Twitter Feeds Profiling with TF-IDF. - Juan Pizarro:
Using N-grams to detect Bots on Twitter. - Marco Polignano, Marco Giuseppe de Pinto, Pasquale Lops, Giovanni Semeraro:
Identification Of Bot Accounts In Twitter Using 2D CNNs On User-generated Contents. - Jose R. Prieto Fontcuberta, Gretel Liz De la Peña Sarracén:
Bots and Gender Profiling using a Deep Learning Approach. - Piotr Przybyla:
Detecting Bot Accounts on Twitter by Measuring Message Predictability. - Edwin A. Puertas Del Castillo, Luis Gabriel Moreno-Sandoval, Flor Miriam Plaza del Arco, Jorge Andrés Alvarado-Valencia, Alexandra Pomares Quimbaya, Luis Alfonso Ureña López:
Bots and Gender Profiling on Twitter using Sociolinguistic Features. - Victor Radivchev, Alex Nikolov, Alexandrina Lambova:
Celebrity Profiling using TF-IDF, Logistic Regression, and SVM. - Mostafa Rahgouy, Hamed Babaei Giglou, Taher Rahgooy, Mohammad Karami Sheykhlan, Erfan Mohammadzadeh:
Cross-domain Authorship Attribution: Author Identification using a Multi-Aspect Ensemble Approach. - Radarapu Rakesh, Yogesh Vishwakarma, Akkajosyula Surya Sai Gopal, Anand Kumar M:
Bot and Gender Identification from Twitter. - Usman Saeed, Farid Shirazi:
Bots and Gender Classification on Twitter. - Muhammad Hammad Fahim Siddiqui, Iqra Ameer, Alexander F. Gelbukh, Grigori Sidorov:
Bots and Gender Profiling on Twitter. - Mahendrakar Srinivasarao, Siddharth Manu:
Bots and Gender Profiling using Character and Word N-Grams. - Todor Staykovski:
Stacked Bots and Gender Prediction from Twitter Feeds. - Muhammad Usman Asif, Muhammad Naeem, Zeeshan Ramzan, Fahad Najib:
Word Distance Approach for Celebrity Profiling. - Alex I. Valencia-Valencia, Helena Gómez-Adorno, Christopher Stephens Rhodes, Gibran Fuentes Pineda:
Bots and Gender Identification Based on Stylometry of Tweet Minimal Structure and n-grams Model. - Hans van Halteren:
Bot and Gender Recognition on Tweets using Feature Count Deviations. - Hans van Halteren:
Cross-Domain Authorship Attribution with Federales. - Inna Vogel, Peter Jiang:
Bot and Gender Identification in Twitter using Word and Character N-Grams. - Chaoyuan Zuo, Yu Zhao, Ritwik Banerjee:
Style Change Detection with Feed-forward Neural Networks.
ProtestNews - Extracting Protests from News
- Ali Hürriyetoglu, Erdem Yörük, Deniz Yuret, Çagri Yoltar, Burak Gürel, Firat Durusan, Osman Mutlu, Arda Akdemir:
Overview of CLEF 2019 Lab ProtestNews: Extracting Protests from News in a Cross-context setting. - Erkan Basar, Simge Ekiz, Antal van den Bosch:
A Comparative Study on Generalizability of Information Extraction Models on Protest News. - Angelo Basile, Tommaso Caselli:
ProTestA: Identifying and Extracting Protest Events in News Notebook for ProtestNews Lab at CLEF 2019. - Chedi Bechikh Ali:
Linguistic Parameters and Word Embeddings for Protest News Detection in Text. - Elizaveta Maslennikova:
ELMo Word Representations For News Protection. - Anaïs Ollagnier, Hywel T. P. Williams:
Classification and Event Identification Using Word Embedding. - Benjamin J. Radford:
Multitask Models for Supervised Protest Detection in Texts. - Ali Safaya:
Event Sentence Detection Task Using Attention Model. - Gabriella Skitalinskaya, Jonas Klaff, Maximilian Spliethöver:
CLEF ProtestNews Lab 2019: Contextualized Word Embeddings for Event Sentence Detection and Event Extraction. - D. Thenmozhi, Chandrabose Aravindan, Abishek Shyamsunder, Adithya Viswanathan, Akash Kumar Pujari:
Extracting Protests from News Using LSTM models with different Attention Mechanisms.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.