


default search action
11. AISTATS 2007: San Juan, Puerto Rico
- Marina Meila, Xiaotong Shen:

Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics, AISTATS 2007, San Juan, Puerto Rico, March 21-24, 2007. JMLR Proceedings 2, JMLR.org 2007 - Marina Meila, Xiaotong Shen:

Preface. 1-2 - Douglas Aberdeen, Olivier Buffet, Owen Thomas:

Policy-Gradients for PSRs and POMDPs. 3-10 - Sameer Agarwal, Josh Wills, Lawrence Cayton, Gert R. G. Lanckriet, David J. Kriegman, Serge J. Belongie:

Generalized Non-metric Multidimensional Scaling. 11-18 - Amr Ahmed, Eric P. Xing:

Seeking The Truly Correlated Topic Posterior - on tight approximate inference of logistic-normal admixture model. 19-26 - Yonatan Amit, Ofer Dekel, Yoram Singer:

A Boosting Algorithm for Label Covering in Multilabel Problems. 27-34 - Avleen Singh Bijral, Markus Breitenbach, Gregory Z. Grudic:

Mixture of Watson Distributions: A Generative Model for Hyperspherical Embeddings. 35-42 - Edwin V. Bonilla, Felix V. Agakov, Christopher K. I. Williams:

Kernel Multi-task Learning using Task-specific Features. 43-50 - Julie Carreau, Yoshua Bengio:

A Hybrid Pareto Model for Conditional Density Estimation of Asymmetric Fat-Tail Data. 51-58 - Miguel Á. Carreira-Perpiñán, Zhengdong Lu:

The Laplacian Eigenmaps Latent Variable Model. 59-66 - James Cook, Ilya Sutskever, Andriy Mnih, Geoffrey E. Hinton:

Visualizing Similarity Data with a Mixture of Maps. 67-74 - Timothée Cour, Jianbo Shi:

Solving Markov Random Fields with Spectral Relaxation. 75-82 - Hal Daumé III:

Fast search for Dirichlet process mixture models. 83-90 - Ricky Der, Daniel Lee:

Large-Margin Classification in Banach Spaces. 91-98 - Gregory Druck, Mukund Narasimhan, Paul A. Viola:

Learning A* underestimates: Using inference to guide inference. 99-106 - Daniel Eaton, Kevin P. Murphy:

Exact Bayesian structure learning from uncertain interventions. 107-114 - Michael Fink:

Online Learning of Search Heuristics. 114-122 - Peter V. Gehler, Olivier Chapelle:

Deterministic Annealing for Multiple-Instance Learning. 123-130 - Amir Globerson, Tommi S. Jaakkola:

Approximate inference using conditional entropy decompositions. 130-138 - Amir Globerson, Sam T. Roweis:

Visualizing pairwise similarity via semidefinite programming. 139-146 - Vibhav Gogate

, Rina Dechter:
SampleSearch: A Scheme that Searches for Consistent Samples. 147-154 - Andrew B. Goldberg, Xiaojin Zhu, Stephen J. Wright:

Dissimilarity in Graph-Based Semi-Supervised Classification. 155-162 - Amit Gruber, Yair Weiss, Michal Rosen-Zvi:

Hidden Topic Markov Models. 163-170 - Sudipto Guha, Andrew McGregor:

Space-Efficient Sampling. 171-178 - David R. Hardoon, John Shawe-Taylor, Antti Ajanki, Kai Puolamäki, Samuel Kaski:

Information Retrieval by Inferring Implicit Queries from Eye Movements. 179-186 - Katherine A. Heller, Zoubin Ghahramani:

A Nonparametric Bayesian Approach to Modeling Overlapping Clusters. 187-194 - Bert Huang, Tony Jebara:

Loopy Belief Propagation for Bipartite Maximum Weight b-Matching. 195-202 - Jason K. Johnson, Venkat Chandrasekaran, Alan S. Willsky:

Learning Markov Structure by Maximum Entropy Relaxation. 203-210 - Risi Kondor, Andrew G. Howard, Tony Jebara:

Multi-object tracking with representations of the symmetric group. 211-218 - Petri Kontkanen, Petri Myllymäki:

MDL Histogram Density Estimation. 219-226 - Eyal Krupka, Naftali Tishby:

Incorporating Prior Knowledge on Features into Learning. 227-234 - Brian Kulis, Arun C. Surendran, John C. Platt:

Fast Low-Rank Semidefinite Programming for Embedding and Clustering. 235-242 - Neil D. Lawrence:

Learning for Larger Datasets with the Gaussian Process Latent Variable Model. 243-250 - Svetlana Lazebnik, Maxim Raginsky:

Learning Nearest-Neighbor Quantizers from Labeled Data by Information Loss Minimization. 251-258 - Ann B. Lee, Boaz Nadler:

Treelets | A Tool for Dimensionality Reduction and Multi-Scale Analysis of Unstructured Data. 259-266 - Jeremy Lewi, Robert J. Butera, Liam Paninski:

Efficient active learning with generalized linear models. 267-274 - Xiao Li, Jeff A. Bilmes:

A Bayesian Divergence Prior for Classiffier Adaptation. 275-282 - Han Liu, John D. Lafferty, Larry A. Wasserman:

Sparse Nonparametric Density Estimation in High Dimensions Using the Rodeo. 283-290 - Yufeng Liu:

Fisher Consistency of Multicategory Support Vector Machines. 291-298 - Zhengdong Lu:

Semi-supervised Clustering with Pairwise Constraints: A Discriminative Approach. 299-306 - Omid Madani, Wiley Greiner, David Kempe, Mohammad R. Salavatipour:

Recall Systems: Effcient Learning and Use of Category Indices. 307-314 - Vikash K. Mansinghka, Daniel M. Roy, Ryan Rifkin, Joshua B. Tenenbaum:

AClass: A simple, online, parallelizable algorithm for probabilistic classification. 315-322 - H. Brendan McMahan, Geoffrey J. Gordon:

A Fast Bundle-based Anytime Algorithm for Poker and other Convex Games. 323-330 - Joris M. Mooij, Bastian Wemmenhove, Bert Kappen, Tommaso Rizzo:

Loop Corrected Belief Propagation. 331-338 - Alexandru Niculescu-Mizil, Rich Caruana:

Inductive Transfer for Bayesian Network Structure Learning. 339-346 - Luis E. Ortiz, Robert E. Schapire, Sham M. Kakade:

Maximum Entropy Correlated Equilibria. 347-354 - José M. Peña:

Approximate Counting of Graphical Models Via MCMC. 355-362 - Kristiaan Pelckmans, John Shawe-Taylor, Johan A. K. Suykens, Bart De Moor:

Margin based Transductive Graph Cuts using Linear Programming. 363-370 - Marc'Aurelio Ranzato, Y-Lan Boureau, Sumit Chopra, Yann LeCun:

A Unified Energy-Based Framework for Unsupervised Learning. 371-379 - Nathan D. Ratliff, J. Andrew Bagnell, Martin Zinkevich:

(Approximate) Subgradient Methods for Structured Prediction. 380-387 - Vikas C. Raykar, Ramani Duraiswami, Balaji Krishnapuram:

A fast algorithm for learning large scale preference relations. 388-395 - David S. Rosenberg, Peter L. Bartlett:

The Rademacher Complexity of Co-Regularized Kernel Classes. 396-403 - Nicolas Le Roux, Yoshua Bengio:

Continuous Neural Networks. 404-411 - Ruslan Salakhutdinov, Geoffrey E. Hinton:

Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure. 412-419 - Purnamrita Sarkar, Sajid M. Siddiqi, Geoffrey J. Gordon:

A Latent Space Approach to Dynamic Embedding of Co-occurrence Data. 420-427 - Martin Schafföner, Edin Andelic, Marcel Katz, Sven E. Krüger, Andreas Wendemuth:

Memory-Effcient Orthogonal Least Squares Kernel Density Estimation using Enhanced Empirical Cumulative Distribution Functions. 428-435 - Nicol N. Schraudolph, Jin Yu, Simon Günter:

A Stochastic Quasi-Newton Method for Online Convex Optimization. 436-443 - Matthias W. Seeger, Florian Steinke, Koji Tsuda:

Bayesian Inference and Optimal Design in the Sparse Linear Model. 444-451 - Shai Shalev-Shwartz, Yoram Singer:

A Unified Algorithmic Approach for Efficient Online Label Ranking. 452-459 - Blake Shaw, Tony Jebara:

Minimum Volume Embedding. 460-467 - John Shawe-Taylor, Alexander N. Dolia:

A Framework for Probability Density Estimation. 468-475 - Hao Shen, Stefanie Jegelka, Arthur Gretton:

Fast Kernel ICA using an Approximate Newton Method. 476-483 - Pannagadatta K. Shivaswamy, Tony Jebara:

Ellipsoidal Machines. 484-491 - Sajid M. Siddiqi, Geoffrey J. Gordon, Andrew W. Moore:

Fast State Discovery for HMM Model Selection and Learning. 492-499 - Ricardo Bezerra de Andrade e Silva, Katherine A. Heller, Zoubin Ghahramani:

Analogical Reasoning with Relational Bayesian Sets. 500-507 - Michael Siracusa, John W. Fisher III:

Dynamic Factorization Tests: Applications to Multi-modal Data Association. 508-515 - Cristian Sminchisescu, Max Welling:

Generalized Darting Monte Carlo. 516-523 - Edward Lloyd Snelson, Zoubin Ghahramani:

Local and global sparse Gaussian process approximations. 524-531 - Harald Steck, Tommi S. Jaakkola:

Predictive Discretization during Model Selection. 532-539 - Peter Sunehag:

Emerge and spread models and word burstiness. 540-547 - Ilya Sutskever, Geoffrey E. Hinton:

Learning Multilevel Distributed Representations for High-Dimensional Sequences. 548-555 - Yee Whye Teh, Dilan Görür, Zoubin Ghahramani:

Stick-breaking Construction for the Indian Buffet Process. 556-563 - Romain Thibaux, Michael I. Jordan:

Hierarchical Beta Processes and the Indian Buffet Process. 564-571 - Jarkko Venna, Samuel Kaski:

Nonlinear Dimensionality Reduction as Information Retrieval. 572-579 - Gang Wang, Dit-Yan Yeung, Frederick H. Lochovsky:

The Kernel Path in Kernelized LASSO. 580-587 - Junhui Wang:

Efficient large margin semisupervised learning. 588-595 - Fei Wang, Shijun Wang, Changshui Zhang, Ole Winther:

Semi-Supervised Mean Fields. 596-603 - Ping Wang, Dongryeol Lee, Alexander G. Gray, James M. Rehg:

Fast Mean Shift with Accurate and Stable Convergence. 604-611 - Kilian Q. Weinberger, Gerald Tesauro:

Metric Learning for Kernel Regression. 612-619 - Jason L. Williams, John W. Fisher III, Alan S. Willsky:

Performance Guarantees for Information Theoretic Active Inference. 620-627 - Mingrui Wu, Bernhard Schölkopf:

Transductive Classification via Local Learning Regularization. 628-635 - Yuhong Yang:

How Powerful Can Any Regression Learning Procedure Be?. 636-643 - Jieping Ye, Tao Xiong:

SVM versus Least Squares SVM. 644-651 - Changhe Yuan, Marek J. Druzdzel:

Importance Sampling for General Hybrid Bayesian Networks. 652-659 - Ming Yuan:

Nonnegative Garrote Component Selection in Functional ANOVA models. 660-666 - Jiji Zhang:

Generalized Do-Calculus with Testable Causal Assumptions. 667-674 - Hui Zou:

An Improved 1-norm SVM for Simultaneous Classification and Variable Selection. 675-681

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














