


default search action
Journal of Machine Learning Research, Volume 7
Volume 7, January 2006
- Janez Demsar:

Statistical Comparisons of Classifiers over Multiple Data Sets. 1-30 - Nicolò Cesa-Bianchi, Claudio Gentile, Luca Zaniboni:

Incremental Algorithms for Hierarchical Classification. 31-54 - Michael Schmitt, Laura Martignon:

On the Complexity of Learning Lexicographic Strategies. 55-83 - Tzu-Kuo Huang, Ruby C. Weng, Chih-Jen Lin:

Generalized Bradley-Terry Models and Multi-Class Probability Estimates. 85-115 - Andreas Maurer:

Bounds for Linear Multi-Task Learning. 117-139 - Masashi Sugiyama:

Active Learning in Approximately Linear Regression Based on Conditional Expectation of Generalization Error. 141-166
Volume 7, February 2006
- Dana Pe'er, Amos Tanay, Aviv Regev:

MinReg: A Scalable Algorithm for Learning Parsimonious Regulatory Networks in Yeast and Mammals. 167-189 - Ricardo Bezerra de Andrade e Silva, Richard Scheines, Clark Glymour, Peter Spirtes:

Learning the Structure of Linear Latent Variable Models. 191-246 - Gilles Blanchard, Motoaki Kawanabe, Masashi Sugiyama, Vladimir G. Spokoiny, Klaus-Robert Müller:

In Search of Non-Gaussian Components of a High-Dimensional Distribution. 247-282 - Paul W. Goldberg:

Some Discriminant-Based PAC Algorithms. 283-306 - Andrea Passerini, Paolo Frasconi, Luc De Raedt:

Kernels on Prolog Proof Trees: Statistical Learning in the ILP Setting. 307-342 - Greg Hamerly, Erez Perelman, Jeremy Lau, Brad Calder, Timothy Sherwood:

Using Machine Learning to Guide Architecture Simulation. 343-378 - Ron Begleiter, Ran El-Yaniv:

Superior Guarantees for Sequential Prediction and Lossless Compression via Alphabet Decomposition. 379-411 - Rémi Munos:

Geometric Variance Reduction in Markov Chains: Application to Value Function and Gradient Estimation. 413-427 - Emanuel Kitzelmann, Ute Schmid:

Inductive Synthesis of Functional Programs: An Explanation Based Generalization Approach. 429-454 - Tonatiuh Peña Centeno, Neil D. Lawrence:

Optimising Kernel Parameters and Regularisation Coefficients for Non-linear Discriminant Analysis. 455-491
Volume 7, March 2006
- Pat Langley, Dongkyu Choi:

Learning Recursive Control Programs from Problem Solving. 493-518 - Sayan Mukherjee, Ding-Xuan Zhou:

Learning Coordinate Covariances via Gradients. 519-549 - Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer:

Online Passive-Aggressive Algorithms. 551-585
Volume 7, April 2006
- Adam R. Klivans, Rocco A. Servedio:

Toward Attribute Efficient Learning of Decision Lists and Parities. 587-602 - Mingrui Wu, Bernhard Schölkopf, Gökhan H. Bakir:

A Direct Method for Building Sparse Kernel Learning Algorithms. 603-624 - Kazuho Watanabe, Sumio Watanabe:

Stochastic Complexities of Gaussian Mixtures in Variational Bayesian Approximation. 625-644 - Daniil Ryabko:

Pattern Recognition for Conditionally Independent Data. 645-664 - Clayton D. Scott, Robert D. Nowak:

Learning Minimum Volume Sets. 665-704
Volume 7, May 2006
- Peter J. Bickel, Yaacov Ritov, Alon Zakai:

Some Theory for Generalized Boosting Algorithms. 705-732 - Don R. Hush, Patrick Kelly, Clint Scovel, Ingo Steinwart:

QP Algorithms with Guaranteed Accuracy and Run Time for Support Vector Machines. 733-769 - Rémi Munos:

Policy Gradient in Continuous Time. 771-791 - Michael W. Spratling:

Learning Image Components for Object Recognition. 793-815 - Régis Vert, Jean-Philippe Vert:

Consistency and Convergence Rates of One-Class SVMs and Related Algorithms. 817-854 - Ross A. Lippert, Ryan M. Rifkin:

Infinite-sigma Limits For Tikhonov Regularization. 855-876 - Shimon Whiteson, Peter Stone:

Evolutionary Function Approximation for Reinforcement Learning. 877-917
Volume 7, June 2006
- Sharlee Climer, Weixiong Zhang:

Rearrangement Clustering: Pitfalls, Remedies, and Applications. 919-943 - Seyoung Kim, Padhraic Smyth:

Segmental Hidden Markov Models with Random Effects for Waveform Modeling. 945-969 - Guillaume Lecué:

Lower Bounds and Aggregation in Density Estimation. 971-981 - Nicolai Meinshausen:

Quantile Regression Forests. 983-999 - Peter Bühlmann, Bin Yu:

Sparse Boosting. 1001-1024 - Andrew B. Gardner, Abba M. Krieger, George J. Vachtsevanos, Brian Litt:

One-Class Novelty Detection for Seizure Analysis from Intracranial EEG. 1025-1044 - Alberto Roverato, Milan Studený:

A Graphical Representation of Equivalence Classes of AMP Chain Graphs. 1045-1078 - Eyal Even-Dar, Shie Mannor, Yishay Mansour:

Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems. 1079-1105 - S. V. N. Vishwanathan, Nicol N. Schraudolph, Alexander J. Smola:

Step Size Adaptation in Reproducing Kernel Hilbert Space. 1107-1133 - Ting Liu, Andrew W. Moore, Alexander G. Gray:

New Algorithms for Efficient High-Dimensional Nonparametric Classification. 1135-1158
Volume 7, July 2006
- Enrique F. Castillo, Bertha Guijarro-Berdiñas, Oscar Fontenla-Romero, Amparo Alonso-Betanzos:

A Very Fast Learning Method for Neural Networks Based on Sensitivity Analysis. 1159-1182 - Jieping Ye, Tao Xiong:

Computational and Theoretical Analysis of Null Space and Orthogonal Linear Discriminant Analysis. 1183-1204 - Nicolò Cesa-Bianchi, Claudio Gentile, Luca Zaniboni:

Worst-Case Analysis of Selective Sampling for Linear Classification. 1205-1230 - Ichiro Takeuchi, Quoc V. Le, Tim D. Sears, Alexander J. Smola:

Nonparametric Quantile Estimation. 1231-1264
- Kristin P. Bennett, Emilio Parrado-Hernández:

The Interplay of Optimization and Machine Learning Research. 1265-1281 - Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, Alexander J. Smola:

Second Order Cone Programming Approaches for Handling Missing and Uncertain Data. 1283-1314 - Yi Zhang, Samuel Burer, W. Nick Street:

Ensemble Pruning Via Semi-definite Programming. 1315-1338 - Anders Bergkvist, Peter Damaschke, Marcel Lüthi:

Linear Programs for Hypotheses Selection in Probabilistic Inference Models. 1339-1355 - Radu Stefan Niculescu, Tom M. Mitchell, R. Bharat Rao:

Bayesian Network Learning with Parameter Constraints. 1357-1383 - Matthias Heiler, Christoph Schnörr:

Learning Sparse Representations by Non-Negative Matrix Factorization and Sequential Cone Programming. 1385-1407 - Tijl De Bie, Nello Cristianini:

Fast SDP Relaxations of Graph Cut Clustering, Transduction, and Other Combinatorial Problem. 1409-1436 - Tobias Glasmachers, Christian Igel:

Maximum-Gain Working Set Selection for SVMs. 1437-1466 - Luca Zanni, Thomas Serafini, Gaetano Zanghirati:

Parallel Software for Training Large Scale Support Vector Machines on Multiprocessor Systems. 1467-1492 - S. Sathiya Keerthi, Olivier Chapelle, Dennis DeCoste:

Building Support Vector Machines with Reduced Classifier Complexity. 1493-1515 - Olvi L. Mangasarian:

Exact 1-Norm Support Vector Machines Via Unconstrained Convex Differentiable Minimization. 1517-1530 - Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, Bernhard Schölkopf:

Large Scale Multiple Kernel Learning. 1531-1565 - Shai Shalev-Shwartz, Yoram Singer:

Efficient Learning of Label Ranking by Soft Projections onto Polyhedra. 1567-1599 - Juho Rousu, Craig Saunders, Sándor Szedmák, John Shawe-Taylor:

Kernel-Based Learning of Hierarchical Multilabel Classification Models. 1601-1626 - Benjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan:

Structured Prediction, Dual Extragradient and Bregman Projections. 1627-1653
Volume 7, August 2006
- Hema Raghavan, Omid Madani, Rosie Jones:

Active Learning with Feedback on Features and Instances. 1655-1686 - Ronan Collobert, Fabian H. Sinz, Jason Weston, Léon Bottou:

Large Scale Transductive SVMs. 1687-1712 - Francis R. Bach, David Heckerman, Eric Horvitz:

Considering Cost Asymmetry in Learning Classifiers. 1713-1741 - Pieter Abbeel, Daphne Koller, Andrew Y. Ng:

Learning Factor Graphs in Polynomial Time and Sample Complexity. 1743-1788
Volume 7, September 2006
- Jelle R. Kok, Nikos Vlassis:

Collaborative Multiagent Reinforcement Learning by Payoff Propagation. 1789-1828 - Martin J. Wainwright:

Estimating the "Wrong" Graphical Model: Benefits in the Computation-Limited Setting. 1829-1859 - Jing Zhou, Dean P. Foster, Robert A. Stine, Lyle H. Ungar:

Streamwise Feature Selection. 1861-1885
- Chen Yanover, Talya Meltzer, Yair Weiss:

Linear Programming Relaxations and Belief Propagation - An Empirical Study. 1887-1907 - Pavel Laskov, Christian Gehl, Stefan Krüger, Klaus-Robert Müller:

Incremental Support Vector Learning: Analysis, Implementation and Applications. 1909-1936
Volume 7, October 2006
- Shalabh Bhatnagar, Vivek S. Borkar, Madhukar Akarapu:

A Simulation-Based Algorithm for Ergodic Control of Markov Chains Conditioned on Rare Events. 1937-1962 - Francis R. Bach, Michael I. Jordan:

Learning Spectral Clustering, With Application To Speech Separation. 1963-2001 - Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, Antti J. Kerminen:

A Linear Non-Gaussian Acyclic Model for Causal Discovery. 2003-2030 - Dmitry M. Malioutov, Jason K. Johnson, Alan S. Willsky:

Walk-Sums and Belief Propagation in Gaussian Graphical Models. 2031-2064 - Thomas Kämpke:

Distance Patterns in Structural Similarity. 2065-2086 - Hichem Sahbi, Donald Geman:

A Hierarchy of Support Vector Machines for Pattern Detection. 2087-2123 - Fu Chang, Chin-Chin Lin, Chi-Jen Lu:

Adaptive Prototype Learning Algorithms: Theoretical and Experimental Studies. 2125-2148 - Luis M. de Campos:

A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests. 2149-2187 - Tomás Singliar, Milos Hauskrecht:

Noisy-OR Component Analysis and its Application to Link Analysis. 2189-2213 - Dana Angluin, Jiang Chen:

Learning a Hidden Hypergraph. 2215-2236
- Katya Scheinberg

:
An Efficient Implementation of an Active Set Method for SVMs. 2237-2257
Volume 7, November 2006
- Anders Jonsson, Andrew G. Barto:

Causal Graph Based Decomposition of Factored MDPs. 2259-2301 - Mikio L. Braun:

Accurate Error Bounds for the Eigenvalues of the Kernel Matrix. 2303-2328 - Josep M. Porta, Nikos Vlassis, Matthijs T. J. Spaan, Pascal Poupart:

Point-Based Value Iteration for Continuous POMDPs. 2329-2367 - David A. Ross, Richard S. Zemel:

Learning Parts-Based Representations of Data. 2369-2397 - Mikhail Belkin, Partha Niyogi, Vikas Sindhwani:

Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples. 2399-2434 - Di-Rong Chen, Tao Sun:

Consistency of Multiclass Empirical Risk Minimization Methods Based on Convex Loss. 2435-2447 - Magnus Ekdahl, Timo Koski:

Bounds for the Loss in Probability of Correct Classification Under Model Based Approximation. 2449-2480 - Sayan Mukherjee, Qiang Wu:

Estimation of Gradients and Coordinate Covariation in Classification. 2481-2514 - David Barber:

Expectation Correction for Smoothed Inference in Switching Linear Dynamical Systems. 2515-2540 - Peng Zhao, Bin Yu:

On Model Selection Consistency of Lasso. 2541-2563
Volume 7, December 2006
- Andrea Caponnetto, Alexander Rakhlin:

Stability Properties of Empirical Risk Minimization over Donsker Classes. 2565-2583 - Rasmus Kongsgaard Olsson, Lars Kai Hansen

:
Linear State-Space Models for Blind Source Separation. 2585-2602 - Bernhard Moser:

On Representing and Generating Kernels by Fuzzy Equivalence Relations. 2603-2620 - Robert Castelo, Alberto Roverato:

A Robust Procedure For Gaussian Graphical Model Search From Microarray Data With p Larger Than n. 2621-2650 - Charles A. Micchelli, Yuesheng Xu, Haizhang Zhang:

Universal Kernels. 2651-2667
- Philip K. Chan, Richard Lippmann:

Machine Learning for Computer Security. 2669-2672 - Andrej Bratko, Gordon V. Cormack, Bogdan Filipic, Thomas R. Lynam, Blaz Zupan:

Spam Filtering Using Statistical Data Compression Models. 2673-2698 - Giorgio Fumera, Ignazio Pillai, Fabio Roli:

Spam Filtering Based On The Analysis Of Text Information Embedded Into Images. 2699-2720 - Jeremy Z. Kolter, Marcus A. Maloof:

Learning to Detect and Classify Malicious Executables in the Wild. 2721-2744 - Charles V. Wright, Fabian Monrose, Gerald M. Masson:

On Inferring Application Protocol Behaviors in Encrypted Network Traffic. 2745-2769

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














