


default search action
Journal of Machine Learning Research, Volume 3
Volume 3, July 2002
- Francis R. Bach, Michael I. Jordan:

Kernel Independent Component Analysis. 1-48 - Nader H. Bshouty, Nadav Eiron:

Learning Monotone DNF from a Teacher that Almost Does Not Answer Membership Queries. 49-57 - John N. Tsitsiklis:

On the Convergence of Optimistic Policy Iteration. 59-72 - András Antos, Balázs Kégl, Tamás Linder, Gábor Lugosi:

Data-dependent margin-based generalization bounds for classification. 73-98
Volume 3, August 2002
- Kwokleung Chan, Te-Won Lee, Terrence J. Sejnowski:

Variational Learning of Clusters of Undercomplete Nonsymmetric Independent Components. 99-114 - Felix A. Gers, Nicol N. Schraudolph, Jürgen Schmidhuber:

Learning Precise Timing with LSTM Recurrent Networks. 115-143 - Istvan Szita, Bálint Takács, András Lörincz:

MDPs: Learning in Varying Environments. 145-174
Volume 3, September 2002
- Ralf Herbrich, Robert C. Williamson:

Algorithmic Luckiness. 175-212
Volume 3, October 2002
- Ronen I. Brafman, Moshe Tennenholtz:

R-MAX - A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning. 213-231 - Matthias W. Seeger:

PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification. 233-269 - Ziv Nevo, Ran El-Yaniv:

On Online Learning of Decision Lists. 271-301
Volume 3, November 2002
- Glenn Fung, Olvi L. Mangasarian, Alexander J. Smola:

Minimal Kernel Classifiers. 303-321 - Masashi Sugiyama, Klaus-Robert Müller:

The Subspace Information Criterion for Infinite Dimensional Hypothesis Spaces. 323-359
- Olivier Bousquet, Manfred K. Warmuth:

Tracking a Small Set of Experts by Mixing Past Posteriors. 363-396 - Peter Auer:

Using Confidence Bounds for Exploitation-Exploration Trade-offs. 397-422 - Adam Kalai, Santosh S. Vempala:

Efficient Algorithms for Universal Portfolios. 423-440 - Shai Ben-David, Nadav Eiron, Hans Ulrich Simon:

Limitations of Learning Via Embeddings in Euclidean Half Spaces. 441-461 - Peter L. Bartlett, Shahar Mendelson:

Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. 463-482 - Nader H. Bshouty, Dmitry Gavinsky:

On Boosting with Polynomially Bounded Distributions. 483-506 - David Maxwell Chickering:

Optimal Structure Identification With Greedy Search. 507-554
Volume 3, December 2002
- Gert R. G. Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, Michael I. Jordan:

A Robust Minimax Approach to Classification. 555-582 - Alexander Strehl, Joydeep Ghosh:

Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions. 583-617
- Hendrik Blockeel, Jan Struyf:

Efficient Algorithms for Decision Tree Cross-validation. 621-650 - Daniel R. Dooly, Qi Zhang, Sally A. Goldman, Robert A. Amar:

Multiple-Instance Learning of Real-Valued Data. 651-678 - Lise Getoor, Nir Friedman, Daphne Koller, Benjamin Taskar:

Learning Probabilistic Models of Link Structure. 679-707 - Charles X. Ling, Huajie Zhang:

The Representational Power of Discrete Bayesian Networks. 709-721 - Mario Marchand, John Shawe-Taylor:

The Set Covering Machine. 723-746 - Zvika Marx, Ido Dagan, Joachim M. Buhmann, Eli Shamir:

Coupled Clustering: A Method for Detecting Structural Correspondence. 747-780 - Prasanth B. Nair, Arindam Choudhury, Andy J. Keane:

Some Greedy Learning Algorithms for Sparse Regression and Classification with Mercer Kernels. 781-801 - Theodore J. Perkins, Andrew G. Barto:

Lyapunov Design for Safe Reinforcement Learning. 803-832 - Tobias Scheffer, Stefan Wrobel:

Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling. 833-862 - Marc Sebban, Richard Nock, Stéphane Lallich:

Stopping Criterion for Boosting-Based Data Reduction Techniques: from Binary to Multiclass Problem. 863-885 - Bryan Singer, Manuela M. Veloso:

Learning to Construct Fast Signal Processing Implementations. 887-919 - Malcolm J. A. Strens, Andrew W. Moore:

Policy Search using Paired Comparisons. 921-950
Volume 3, January 2003
- Koby Crammer, Yoram Singer:

Ultraconservative Online Algorithms for Multiclass Problems. 951-991 - David M. Blei, Andrew Y. Ng, Michael I. Jordan:

Latent Dirichlet Allocation. 993-1022
Volume 3, Febuary 2003
- Koby Crammer, Yoram Singer:

A Family of Additive Online Algorithms for Category Ranking. 1025-1058 - Nicola Cancedda, Éric Gaussier, Cyril Goutte, Jean-Michel Renders:

Word-Sequence Kernels. 1059-1082 - Dmitry Zelenko, Chinatsu Aone, Anthony Richardella:

Kernel Methods for Relation Extraction. 1083-1106 - Kobus Barnard, Pinar Duygulu, David A. Forsyth, Nando de Freitas, David M. Blei, Michael I. Jordan:

Matching Words and Pictures. 1107-1135 - Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Janvin:

A Neural Probabilistic Language Model. 1137-1155
Volume 3, March 2003
- Isabelle Guyon, André Elisseeff:

An Introduction to Variable and Feature Selection. 1157-1182 - Ron Bekkerman, Ran El-Yaniv, Naftali Tishby, Yoad Winter:

Distributional Word Clusters vs. Words for Text Categorization. 1183-1208 - Yoshua Bengio, Nicolas Chapados:

Extensions to Metric-Based Model Selection. 1209-1227 - Jinbo Bi, Kristin P. Bennett, Mark J. Embrechts, Curt M. Breneman, Minghu Song:

Dimensionality Reduction via Sparse Support Vector Machines. 1229-1243 - Rich Caruana, Virginia R. de Sa:

Benefitting from the Variables that Variable Selection Discards. 1245-1264 - Inderjit S. Dhillon, Subramanyam Mallela, Rahul Kumar:

A Divisive Information-Theoretic Feature Clustering Algorithm for Text Classification. 1265-1287 - George Forman:

An Extensive Empirical Study of Feature Selection Metrics for Text Classification. 1289-1305 - Amir Globerson, Naftali Tishby:

Sufficient Dimensionality Reduction. 1307-1331 - Simon Perkins, Kevin Lacker, James Theiler:

Grafting: Fast, Incremental Feature Selection by Gradient Descent in Function Space. 1333-1356 - Alain Rakotomamonjy:

Variable Selection Using SVM-based Criteria. 1357-1370 - Juha Reunanen:

Overfitting in Making Comparisons Between Variable Selection Methods. 1371-1382 - Isabelle Rivals, Léon Personnaz:

MLPs (Mono-Layer Polynomials and Multi-Layer Perceptrons) for Nonlinear Modeling. 1383-1398 - Hervé Stoppiglia, Gérard Dreyfus, Rémi Dubois, Yacine Oussar:

Ranking a Random Feature for Variable and Feature Selection. 1399-1414 - Kari Torkkola:

Feature Extraction by Non-Parametric Mutual Information Maximization. 1415-1438 - Jason Weston, André Elisseeff, Bernhard Schölkopf, Michael E. Tipping:

Use of the Zero-Norm with Linear Models and Kernel Methods. 1439-1461

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














