default search action
Jakub Nalepa
Person information
- affiliation: Silesian University of Technology, Gliwice, Poland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j43]Tomasz Jastrzab, Michal Myller, Lukasz Tulczyjew, Miroslaw Blocho, Michal Kawulok, Adam Czornik, Jakub Nalepa:
Standardized validation of vehicle routing algorithms. Appl. Intell. 54(2): 1335-1364 (2024) - [j42]Bartosz Machura, Damian Kucharski, Oskar Bozek, Bartosz Eksner, Bartosz Kokoszka, Tomasz Pekala, Mateusz Radom, Marek Strzelczak, Lukasz Zarudzki, Benjamín Gutiérrez-Becker, Agata Krason, Jean Tessier, Jakub Nalepa:
Deep learning ensembles for detecting brain metastases in longitudinal multi-modal MRI studies. Comput. Medical Imaging Graph. 116: 102401 (2024) - [j41]Daniel Marek, Jakub Nalepa:
End-to-end deep learning pipeline for on-board extraterrestrial rock segmentation. Eng. Appl. Artif. Intell. 127(Part B): 107311 (2024) - [j40]Bartosz Grabowski, Maciej Ziaja, Michal Kawulok, Piotr Bosowski, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
Squeezing adaptive deep learning methods with knowledge distillation for on-board cloud detection. Eng. Appl. Artif. Intell. 132: 107835 (2024) - [j39]Ramez Shendy, Jakub Nalepa:
Few-shot satellite image classification for bringing deep learning on board OPS-SAT. Expert Syst. Appl. 251: 123984 (2024) - [j38]Maria Ferlin, Sylwia Majchrowska, Marta A. Plantykow, Alicja Kwasniewska, Agnieszka Mikolajczyk-Barela, Milena Olech, Jakub Nalepa:
Quantifying inconsistencies in the Hamburg Sign Language Notation System. Expert Syst. Appl. 256: 124911 (2024) - [j37]Wojciech Dudzik, Jakub Nalepa, Michal Kawulok:
Ensembles of evolutionarily-constructed support vector machine cascades. Knowl. Based Syst. 288: 111490 (2024) - [j36]Michal Kawulok, Pawel Kowaleczko, Maciej Ziaja, Jakub Nalepa, Daniel Kostrzewa, Daniele Latini, Davide De Santis, Giorgia Salvucci, Ilaria Petracca, Valeria La Pegna, Zoltan Bartalis, Fabio Del Frate:
Hyperspectral Image Super-Resolution: Task-Based Evaluation. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 17: 18949-18966 (2024) - 2023
- [j35]Krzysztof Kotowski, Damian Kucharski, Bartosz Machura, Szymon Adamski, Benjamín Gutiérrez-Becker, Agata Krason, Lukasz Zarudzki, Jean Tessier, Jakub Nalepa:
Detecting liver cirrhosis in computed tomography scans using clinically-inspired and radiomic features. Comput. Biol. Medicine 152: 106378 (2023) - [j34]Jakub Nalepa, Krzysztof Kotowski, Bartosz Machura, Szymon Adamski, Oskar Bozek, Bartosz Eksner, Bartosz Kokoszka, Tomasz Pekala, Mateusz Radom, Marek Strzelczak, Lukasz Zarudzki, Agata Krason, Filippo Arcadu, Jean Tessier:
Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients. Comput. Biol. Medicine 154: 106603 (2023) - [j33]Bogdan Ruszczak, Krzysztof Kotowski, Jacek Andrzejewski, Christoph Haskamp, Jakub Nalepa:
OXI: An online tool for visualization and annotation of satellite time series data. SoftwareX 23: 101476 (2023) - [j32]Artur Miroszewski, Jakub Mielczarek, Grzegorz Czelusta, Filip Szczepanek, Bartosz Grabowski, Bertrand Le Saux, Jakub Nalepa:
Detecting Clouds in Multispectral Satellite Images Using Quantum-Kernel Support Vector Machines. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 16: 7601-7613 (2023) - [j31]Tomasz Tarasiewicz, Jakub Nalepa, Reuben A. Farrugia, Gianluca Valentino, Mang Chen, Johann A. Briffa, Michal Kawulok:
Multitemporal and Multispectral Data Fusion for Super-Resolution of Sentinel-2 Images. IEEE Trans. Geosci. Remote. Sens. 61: 1-19 (2023) - 2022
- [j30]Jakub Nalepa, Szymon Adamski, Krzysztof Kotowski, Sylwia Chelstowska, Magdalena Machnikowska-Sokolowska, Oskar Bozek, Agata Wisz, Elzbieta Jurkiewicz:
Segmenting pediatric optic pathway gliomas from MRI using deep learning. Comput. Biol. Medicine 142: 105237 (2022) - [j29]Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
Graph Neural Networks Extract High-Resolution Cultivated Land Maps From Sentinel-2 Image Series. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022) - [j28]Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
A Multibranch Convolutional Neural Network for Hyperspectral Unmixing. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022) - [j27]Bogdan Ruszczak, Agata M. Wijata, Jakub Nalepa:
Unbiasing the Estimation of Chlorophyll from Hyperspectral Images: A Benchmark Dataset, Validation Procedure and Baseline Results. Remote. Sens. 14(21): 5526 (2022) - [j26]Tomasz Gandor, Jakub Nalepa:
First Gradually, Then Suddenly: Understanding the Impact of Image Compression on Object Detection Using Deep Learning. Sensors 22(3): 1104 (2022) - 2021
- [j25]Wojciech Dudzik, Jakub Nalepa, Michal Kawulok:
Evolving data-adaptive support vector machines for binary classification. Knowl. Based Syst. 227: 107221 (2021) - [j24]Lukasz Tulczyjew, Michal Kawulok, Jakub Nalepa:
Unsupervised Feature Learning Using Recurrent Neural Nets for Segmenting Hyperspectral Images. IEEE Geosci. Remote. Sens. Lett. 18(12): 2142-2146 (2021) - [j23]Jakub Nalepa, Michal Myller, Marcin Cwiek, Lukasz Zak, Tomasz Lakota, Lukasz Tulczyjew, Michal Kawulok:
Towards On-Board Hyperspectral Satellite Image Segmentation: Understanding Robustness of Deep Learning through Simulating Acquisition Conditions. Remote. Sens. 13(8): 1532 (2021) - [j22]Maciej Ziaja, Piotr Bosowski, Michal Myller, Grzegorz Gajoch, Michal Gumiela, Jennifer Protich, Katherine Borda, Dhivya Jayaraman, Renata Dividino, Jakub Nalepa:
Benchmarking Deep Learning for On-Board Space Applications. Remote. Sens. 13(19): 3981 (2021) - [j21]Jakub Nalepa, Michal Myller, Lukasz Tulczyjew, Michal Kawulok:
Deep Ensembles for Hyperspectral Image Data Classification and Unmixing. Remote. Sens. 13(20): 4133 (2021) - [j20]Jakub Nalepa:
Recent Advances in Multi- and Hyperspectral Image Analysis. Sensors 21(18): 6002 (2021) - 2020
- [j19]Pablo Ribalta Lorenzo, Lukasz Tulczyjew, Michal Marcinkiewicz, Jakub Nalepa:
Hyperspectral Band Selection Using Attention-Based Convolutional Neural Networks. IEEE Access 8: 42384-42403 (2020) - [j18]Jakub Nalepa, Pablo Ribalta Lorenzo, Michal Marcinkiewicz, Barbara Bobek-Billewicz, Pawel Wawrzyniak, Maksym Walczak, Michal Kawulok, Wojciech Dudzik, Krzysztof Kotowski, Izabela Burda, Bartosz Machura, Grzegorz Mrukwa, Pawel Ulrych, Michael P. Hayball:
Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. Artif. Intell. Medicine 102: 101769 (2020) - [j17]Jakub Nalepa, Michal Myller, Michal Kawulok:
Training- and Test-Time Data Augmentation for Hyperspectral Image Segmentation. IEEE Geosci. Remote. Sens. Lett. 17(2): 292-296 (2020) - [j16]Michal Kawulok, Pawel Benecki, Szymon Piechaczek, Krzysztof Hrynczenko, Daniel Kostrzewa, Jakub Nalepa:
Deep Learning for Multiple-Image Super-Resolution. IEEE Geosci. Remote. Sens. Lett. 17(6): 1062-1066 (2020) - [j15]Jakub Nalepa, Michal Myller, Michal Kawulok:
Transfer Learning for Segmenting Dimensionally Reduced Hyperspectral Images. IEEE Geosci. Remote. Sens. Lett. 17(7): 1228-1232 (2020) - [j14]Jakub Nalepa, Michal Myller, Yasuteru Imai, Ken-ichi Honda, Tomomi Takeda, Marek Antoniak:
Unsupervised Segmentation of Hyperspectral Images Using 3-D Convolutional Autoencoders. IEEE Geosci. Remote. Sens. Lett. 17(11): 1948-1952 (2020) - [j13]Jakub Nalepa, Marek Antoniak, Michal Myller, Pablo Ribalta Lorenzo, Michal Marcinkiewicz:
Towards resource-frugal deep convolutional neural networks for hyperspectral image segmentation. Microprocess. Microsystems 73: 102994 (2020) - 2019
- [j12]Jakub Nalepa, Michal Kawulok:
Selecting training sets for support vector machines: a review. Artif. Intell. Rev. 52(2): 857-900 (2019) - [j11]Pablo Ribalta Lorenzo, Jakub Nalepa, Barbara Bobek-Billewicz, Pawel Wawrzyniak, Grzegorz Mrukwa, Michal Kawulok, Pawel Ulrych, Michael P. Hayball:
Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks. Comput. Methods Programs Biomed. 176: 135-148 (2019) - [j10]Jakub Nalepa, Michal Marcinkiewicz, Michal Kawulok:
Data Augmentation for Brain-Tumor Segmentation: A Review. Frontiers Comput. Neurosci. 13: 83 (2019) - [j9]Jakub Nalepa, Michal Myller, Michal Kawulok:
Validating Hyperspectral Image Segmentation. IEEE Geosci. Remote. Sens. Lett. 16(8): 1264-1268 (2019) - 2018
- [j8]Jakub Nalepa, Miroslaw Blocho:
Adaptive cooperation in parallel memetic algorithms for rich vehicle routing problems. Int. J. Grid Util. Comput. 9(2): 179-192 (2018) - 2017
- [j7]Jakub Nalepa, Miroslaw Blocho:
Adaptive guided ejection search for pickup and delivery with time windows. J. Intell. Fuzzy Syst. 32(2): 1547-1559 (2017) - 2016
- [j6]Michal Kawulok, Jolanta Kawulok, Jakub Nalepa, Bogdan Smolka:
Hybrid adaptation for detecting skin in color images. Intell. Data Anal. 20(s1): S121-S139 (2016) - [j5]Jakub Nalepa, Michal Kawulok:
Adaptive memetic algorithm enhanced with data geometry analysis to select training data for SVMs. Neurocomputing 185: 113-132 (2016) - [j4]Jakub Nalepa, Miroslaw Blocho:
Adaptive memetic algorithm for minimizing distance in the vehicle routing problem with time windows. Soft Comput. 20(6): 2309-2327 (2016) - 2015
- [j3]Jakub Nalepa, Miroslaw Blocho:
Co-operation in the Parallel Memetic Algorithm. Int. J. Parallel Program. 43(5): 812-839 (2015) - 2014
- [j2]Michal Kawulok, Jolanta Kawulok, Jakub Nalepa, Bogdan Smolka:
Self-adaptive algorithm for segmenting skin regions. EURASIP J. Adv. Signal Process. 2014: 170 (2014) - [j1]Michal Kawulok, Jolanta Kawulok, Jakub Nalepa:
Spatial-based skin detection using discriminative skin-presence features. Pattern Recognit. Lett. 41: 3-13 (2014)
Conference and Workshop Papers
- 2024
- [c124]Bogdan Ruszczak, Michal Myller, Lukasz Tulczyjew, Agata Wijata, Jakub Nalepa:
Particle Swarm Optimization Meets Deep Learning for Estimating Root-Zone Soil Moisture from Hyperspectral Images. GECCO Companion 2024: 695-698 - [c123]Lukasz Tulczyjew, Michal Przewozniczek, Renato Tinós, Agata M. Wijata, Jakub Nalepa:
CANNIBAL Unveils the Hidden Gems: Hyperspectral Band Selection via Clustering of Weighted Variable Interaction Graphs. GECCO 2024 - [c122]Agata M. Wijata, Bartlomiej Pycinski, Jakub Nalepa:
Selecting Image Features for Biopsy Needle Detection in Ultrasound Images Using Genetic Algorithms. GECCO Companion 2024: 703-706 - [c121]Martyna Kurbiel, Agata M. Wijata, Jakub Nalepa:
Predicting the MGMT Promoter Methylation Status in T2-FLAIR Magnetic Resonance Imaging Scans Using Machine Learning. ICPRAM 2024: 872-879 - [c120]Bartosz Grabowski, Agata M. Wijata, Lukasz Tulczyjew, Bertrand Le Saux, Jakub Nalepa:
Soil Analysis with Very Few Labels Using Semi-Supervised Hyperspectral Image Classification. IGARSS 2024: 407-411 - [c119]Wiktor Gacek, Lukasz Tulczyjew, Agata M. Wijata, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
Estimating Soil Parameters from Hyperspectral Imagesusing Ensembles of Classic and Deep Machine Learning Models. IGARSS 2024: 412-416 - [c118]Artur Miroszewski, Bertrand Le Saux, Nicolas Longépé, Jakub Nalepa:
Utility of Quantum Kernel Machines in Remote Sensing Applications. IGARSS 2024: 799-803 - [c117]Agata M. Wijata, Artur Miroszewski, Bertrand Le Saux, Nicolas Longépé, Bogdan Ruszczak, Jakub Nalepa:
Detection of Bare Soil in Hyperspectral Images Using Quantum-Kernel Support Vector Machines. IGARSS 2024: 817-822 - [c116]Agata M. Wijata, Tomasz Lakota, Marcin Cwiek, Bogdan Ruszczak, Michal Gumiela, Lukasz Tulczyjew, Andrzej Bartoszek, Nicolas Longépé, Krzysztof Smykala, Jakub Nalepa:
Intuition-1: Toward In-Orbit Bare Soil Detection Using Spectral Vegetation Indices. IGARSS 2024: 1708-1712 - [c115]Agata M. Wijata, Alicja Musial, Dawid Lazaj, Michal Gumiela, Mateusz Przeliorz, Jonas Weiss, Patricia Sagmeister, Thomas Morf, Martin L. Schmatz, Nicolas Longépé, Pierre-Philippe Mathieu, Jakub Nalepa:
Designing (Not Only) Lunar Space Data Centers. IGARSS 2024: 6104-6108 - [c114]Krzysztof Kotowski, Bartosz Machura, Damian Kucharski, Benjamín Gutiérrez-Becker, Agata Krason, Jean Tessier, Jakub Nalepa:
Automated Hepatocellular Carcinoma Analysis in Multi-phase CT with Deep Learning. CaPTion@MICCAI 2024: 93-103 - [c113]Mariusz Bujny, Katarzyna Jesionek, Jakub Nalepa, Tomasz Bartczak, Karol Miszalski-Jamka, Marcin Kostur:
Seeing the Invisible: On Aortic Valve Reconstruction in Non-contrast CT. MICCAI (9) 2024: 572-581 - 2023
- [c112]Miroslaw Blocho, Tomasz Jastrzab, Jakub Nalepa:
Parallel Cooperative Memetic Co-evolution for VRPTW. GECCO Companion 2023: 53-54 - [c111]Jakub Sadel, Michal Kawulok, Mateusz Przeliorz, Jakub Nalepa, Daniel Kostrzewa:
Genetic Structural NAS: A Neural Network Architecture Search with Flexible Slot Connections. GECCO Companion 2023: 79-80 - [c110]Rafal Dubel, Agata M. Wijata, Jakub Nalepa:
On the Impact of Noisy Labels on Supervised Classification Models. ICCS (2) 2023: 111-119 - [c109]Bogdan Ruszczak, Agata M. Wijata, Jakub Nalepa:
Estimating Chlorophyll Content from Hyperspectral Data Using Gradient Features. ICCS (2) 2023: 196-203 - [c108]Bogdan Ruszczak, Krzysztof Kotowski, Jacek Andrzejewski, Alicja Musial, David Evans, Vladimir Zelenevskiy, Sam Bammens, Rodrigo Laurinovics, Jakub Nalepa:
Machine Learning Detects Anomalies in OPS-SAT Telemetry. ICCS (1) 2023: 295-306 - [c107]Jaroslaw Goslinski, Filip Malawski, Mariusz Bujny, Marcin Kostur, Karol Miszalski-Jamka, Jakub Nalepa:
Deep Learning Meets Particle Swarm Optimization For Aortic Valve Calcium Scoring From Cardiac Computed Tomography. ICIP 2023: 3469-3473 - [c106]Agata M. Wijata, Jakub Nalepa:
Machine Learning Detects a Biopsy Needle in Ultrasound Images. ICIP 2023: 3548-3552 - [c105]Artur Miroszewski, Jakub Mielczarek, Filip Szczepanek, Grzegorz Czelusta, Bartosz Grabowski, Bertrand Le Saux, Jakub Nalepa:
Optimizing Kernel-Target Alignment for Cloud Detection in Multispectral Satellite Images. IGARSS 2023: 792-795 - [c104]Artur Miroszewski, Jakub Mielczarek, Filip Szczepanek, Grzegorz Czelusta, Bartosz Grabowski, Bertrand Le Saux, Jakub Nalepa:
Cloud Detection in Multispectral Satellite Images Using Support Vector Machines with Quantum Kernels. IGARSS 2023: 796-799 - [c103]Michal Kawulok, Pawel Kowaleczko, Maciej Ziaja, Jakub Nalepa, Daniel Kostrzewa, Daniele Latini, Davide De Santis, Giorgia Salvucci, Ilaria Petracca, Valeria La Pegna, Zoltan Bartalis, Fabio Del Frate:
Understanding the Value of Hyperspectral Image Super-Resolution from Prisma Data. IGARSS 2023: 1489-1492 - [c102]Maciej Ziaja, Pawel Kowaleczko, Jakub Nalepa, Daniel Kostrzewa, Daniele Latini, Davide De Santis, Giorgia Salvucci, Ilaria Petracca, Valeria La Pegna, Fabio Del Frate, Michal Kawulok:
Hyperspectral Image Pansharpening: The Prisma Case Study. IGARSS 2023: 1633-1636 - [c101]Piotr Bosowski, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
Knowledge Distillation for Memory-Efficient On-Board Image Classification of Mars Imagery. IGARSS 2023: 2018-2021 - [c100]Michal Gumiela, Alicja Musial, Agata M. Wijata, Dawid Lazaj, Jonas Weiss, Patricia Sagmeister, Thomas Morf, Martin L. Schmatz, Jakub Nalepa:
Benchmarking Space-Based Data Center Architectures. IGARSS 2023: 4970-4973 - [c99]Agata M. Wijata, Michel-François Foulon, Yves Bobichon, Nicolas Longépé, Roberto Camarero, Raffaele Vitulli, Marco Celesti, Gianluigi Di Cosimo, Ferran Gascon, Jens Nieke, Jakub Nalepa:
Toward On-Board Methane Detection in Hyperspectral Images. IGARSS 2023: 5866-5869 - [c98]Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
Unbiased Validation of Hyperspectral Unmixing Algorithms. IGARSS 2023: 7344-7347 - 2022
- [c97]Jakub Nalepa, Piotr Bosowski, Wojciech Dudzik, Michal Kawulok:
Fusing Deep Learning with Support Vector Machines to Detect COVID-19 in X-Ray Images. ACIIDS (Companion) 2022: 340-353 - [c96]Krzysztof Kotowski, Bartosz Machura, Jakub Nalepa:
Robustifying Automatic Assessment of Brain Tumor Progression from MRI. BrainLes@MICCAI 2022: 90-101 - [c95]Krzysztof Kotowski, Szymon Adamski, Bartosz Machura, Lukasz Zarudzki, Jakub Nalepa:
Infusing Domain Knowledge into nnU-Nets for Segmenting Brain Tumors in MRI. BrainLes@MICCAI 2022: 186-194 - [c94]Krzysztof Kotowski, Szymon Adamski, Bartosz Machura, Wojciech Malara, Lukasz Zarudzki, Jakub Nalepa:
Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain Tumor Segmentation. BrainLes@MICCAI (2) 2022: 218-227 - [c93]Jakub Nalepa, Stanislaw Czembor, Wojciech Dudzik, Michal Kawulok:
Evolutionary algorithms meet classical and deep machine learning for skin detection in color images. GECCO Companion 2022: 67-68 - [c92]Miroslaw Blocho, Tomasz Jastrzab, Jakub Nalepa:
Cooperative co-evolutionary memetic algorithm for pickup and delivery problem with time windows. GECCO Companion 2022: 176-179 - [c91]Wojciech Dudzik, Jakub Nalepa, Michal Kawulok:
Cascades of evolutionary support vector machines. GECCO Companion 2022: 240-243 - [c90]Tomasz Jastrzab, Michal Myller, Lukasz Tulczyjew, Miroslaw Blocho, Wojciech Ryczko, Michal Kawulok, Jakub Nalepa:
Particle Swarm Optimization Configures the Route Minimization Algorithm. ICCS (1) 2022: 80-87 - [c89]Wojciech Ponikiewski, Jakub Nalepa:
Deep Learning Meets Radiomics For End-To-End Brain Tumor MRI Analysis. ICIP 2022: 1301-1305 - [c88]Agata M. Wijata, Jakub Nalepa:
Unbiased Validation of the Algorithms for Automatic Needle Localization in Ultrasound-Guided Breast Biopsies. ICIP 2022: 3571-3575 - [c87]Jakub Nalepa, Bertrand Le Saux, Nicolas Longépé, Lukasz Tulczyjew, Michal Myller, Michal Kawulok, Krzysztof Smykala, Michal Gumiela:
The Hyperview Challenge: Estimating Soil Parameters from Hyperspectral Images. ICIP 2022: 4268-4272 - [c86]Maciej Ziaja, Jakub Nalepa, Michal Kawulok:
Data Augmentation for Multi-Image Super-Resolution. IGARSS 2022: 119-122 - [c85]Tomasz Tarasiewicz, Lukasz Tulczyjew, Michal Myller, Michal Kawulok, Nicolas Longépé, Jakub Nalepa:
Extracting High-Resolution Cultivated Land Maps from Sentinel-2 Image Series. IGARSS 2022: 175-178 - [c84]Bartosz Grabowski, Maciej Ziaja, Michal Kawulok, Marcin Cwiek, Tomasz Lakota, Nicolas Longépé, Jakub Nalepa:
Are Cloud Detection U-Nets Robust Against in-Orbit Image Acquisition Conditions? IGARSS 2022: 239-242 - [c83]Tomasz Tarasiewicz, Jakub Nalepa, Michal Kawulok:
Semi-Simulated Training Data for Multi-Image Super-Resolution. IGARSS 2022: 481-484 - [c82]Filip Malawski, Jaroslaw Goslinski, Mikolaj Stryja, Katarzyna Jesionek, Marcin Kostur, Karol Miszalski-Jamka, Jakub Nalepa:
Deep Learning Meets Computational Fluid Dynamics to Assess CAD in CCTA. AMAI@MICCAI 2022: 8-17 - 2021
- [c81]Krzysztof Kotowski, Szymon Adamski, Bartosz Machura, Lukasz Zarudzki, Jakub Nalepa:
Coupling nnU-Nets with Expert Knowledge for Accurate Brain Tumor Segmentation from MRI. BrainLes@MICCAI (2) 2021: 197-209 - [c80]Pawel Benecki, Szymon Piechaczek, Daniel Kostrzewa, Jakub Nalepa:
Detecting anomalies in spacecraft telemetry using evolutionary thresholding and LSTMs. GECCO Companion 2021: 143-144 - [c79]Tomasz Tarasiewicz, Jakub Nalepa, Michal Kawulok:
A Graph Neural Network For Multiple-Image Super-Resolution. ICIP 2021: 1824-1828 - [c78]Piotr Bosowski, Joanna Bosowska, Jakub Nalepa:
Evolving Deep Ensembles For Detecting Covid-19 In Chest X-Rays. ICIP 2021: 3772-3776 - [c77]Lukasz Tulczyjew, Jakub Nalepa:
Investigating the Impact of the Training Set Size on Deep Learning-Powered Hyperspectral Unmixing. IGARSS 2021: 2024-2027 - [c76]Michal Kawulok, Tomasz Tarasiewicz, Jakub Nalepa, Diana Tyrna, Daniel Kostrzewa:
Deep Learning for Multiple-Image Super-Resolution of Sentinel-2 Data. IGARSS 2021: 3885-3888 - [c75]Bartosz Grabowski, Maciej Ziaja, Michal Kawulok, Jakub Nalepa:
Towards Robust Cloud Detection in Satellite Images Using U-Nets. IGARSS 2021: 4099-4102 - 2020
- [c74]Tomasz Tarasiewicz, Michal Kawulok, Jakub Nalepa:
Lightweight U-Nets for Brain Tumor Segmentation. BrainLes@MICCAI (2) 2020: 3-14 - [c73]Krzysztof Kotowski, Szymon Adamski, Wojciech Malara, Bartosz Machura, Lukasz Zarudzki, Jakub Nalepa:
Segmenting Brain Tumors from MRI Using Cascaded 3D U-Nets. BrainLes@MICCAI (2) 2020: 265-277 - [c72]Tomasz Tarasiewicz, Jakub Nalepa, Michal Kawulok:
Skinny: A Lightweight U-Net For Skin Detection And Segmentation. ICIP 2020: 2386-2390 - [c71]Jakub Nalepa, Wojciech Dudzik, Michal Kawulok:
Memetic Evolution of Training Sets with Adaptive Radial Basis Kernels for Support Vector Machines. ICPR 2020: 5503-5510 - [c70]Michal Kawulok, Pawel Benecki, Jakub Nalepa, Daniel Kostrzewa:
Evaluating Super-Resolution of Satellite Images: A Proba-V Case Study. IGARSS 2020: 641-644 - [c69]Jakub Nalepa, Lukasz Tulczyjew, Michal Myller, Michal Kawulok:
Hyperspectral Image Classification Using Spectral-Spatial Convolutional Neural Networks. IGARSS 2020: 866-869 - [c68]Jakub Nalepa, Marek Stanek:
Segmenting Hyperspectral Images Using Spectral Convolutional Neural Networks in the Presence of Noise. IGARSS 2020: 870-873 - [c67]Michal Myller, Michal Kawulok, Jakub Nalepa:
Selecting Features from Time Series Using Attention-Based Recurrent Neural Networks. S+SSPR 2020: 87-97 - [c66]Jakub Nalepa, Krzysztof Hrynczenko, Michal Kawulok:
Multiple-Image Super-Resolution Using Deep Learning and Statistical Features. S+SSPR 2020: 261-271 - 2019
- [c65]Daniel Kostrzewa, Szymon Piechaczek, Krzysztof Hrynczenko, Pawel Benecki, Jakub Nalepa, Michal Kawulok:
Super-Resolution Reconstruction Using Deep Learning: Should We Go Deeper? BDAS 2019: 204-216 - [c64]Pablo Ribalta Lorenzo, Michal Marcinkiewicz, Jakub Nalepa:
Multi-modal U-Nets with Boundary Loss and Pre-training for Brain Tumor Segmentation. BrainLes@MICCAI (2) 2019: 135-147 - [c63]Krzysztof Kotowski, Jakub Nalepa, Wojciech Dudzik:
Detection and Segmentation of Brain Tumors from MRI Using U-Nets. BrainLes@MICCAI (2) 2019: 179-190 - [c62]Aleksandra Kardas, Michal Kawulok, Jakub Nalepa:
On Evolutionary Classification Ensembles. CEC 2019: 2974-2981 - [c61]Szymon Piechaczek, Michal Kawulok, Jakub Nalepa:
Memetic Evolution of Classification Ensembles. EvoApplications 2019: 299-307 - [c60]Wojciech Dudzik, Michal Kawulok, Jakub Nalepa:
Evolutionarily-tuned support vector machines. GECCO (Companion) 2019: 165-166 - [c59]Jakub Nalepa, Marcin Cwiek, Wojciech Dudzik, Michal Kawulok, Michael P. Hayball, Grzegorz Mrukwa, Szymon Piechaczek, Pablo Ribalta Lorenzo, Michal Marcinkiewicz, Barbara Bobek-Billewicz, Pawel Wawrzyniak, Pawel Ulrych, Janusz Szymanek:
Data Augmentation via Image Registration. ICIP 2019: 4250-4254 - [c58]Wojciech Dudzik, Michal Kawulok, Jakub Nalepa:
Optimizing Training Data and Hyperparameters of Support Vector Machines Using a Memetic Algorithm. ICMMI 2019: 229-238 - [c57]Michal Kawulok, Szymon Piechaczek, Krzysztof Hrynczenko, Pawel Benecki, Daniel Kostrzewa, Jakub Nalepa:
On Training Deep Networks for Satellite Image Super-Resolution. IGARSS 2019: 3125-3128 - [c56]Michal Marcinkiewicz, Michal Kawulok, Jakub Nalepa:
Segmentation of Multispectral Data Simulated from Hyperspectral Imagery. IGARSS 2019: 3336-3339 - 2018
- [c55]Michal Kawulok, Pawel Benecki, Jakub Nalepa, Daniel Kostrzewa, Lukasz Skonieczny:
Towards Robust Evaluation of Super-Resolution Satellite Image Reconstruction. ACIIDS (1) 2018: 476-486 - [c54]Jakub Nalepa, Michal Myller, Szymon Piechaczek, Krzysztof Hrynczenko, Michal Kawulok:
Genetic Selection of Training Sets for (Not Only) Artificial Neural Networks. BDAS 2018: 194-206 - [c53]Pablo Ribalta Lorenzo, Michal Marcinkiewicz, Jakub Nalepa:
Segmentation of Hyperspectral Images Using Quantized Convolutional Neural Networks. DSD 2018: 260-267 - [c52]Jakub Nalepa, Grzegorz Mrukwa, Michal Kawulok:
Evolvable Deep Features. EvoApplications 2018: 497-505 - [c51]Jakub Nalepa, Miroslaw Blocho:
Parameter-less (meta)heuristics for vehicle routing problems. GECCO (Companion) 2018: 27-28 - [c50]Krzysztof Pawelczyk, Michal Kawulok, Jakub Nalepa:
Genetically-trained deep neural networks. GECCO (Companion) 2018: 63-64 - [c49]Pablo Ribalta Lorenzo, Jakub Nalepa:
Memetic evolution of deep neural networks. GECCO 2018: 505-512 - [c48]Jakub Nalepa, Michael P. Hayball, Stephen J. Brown, Michal Kawulok, Janusz Szymanek:
Extracting Biomarkers from Dynamic Images - Approaches and Challenges. ICPRAM 2018: 520-525 - [c47]Jakub Nalepa, Piotr Mokry, Janusz Szymanek, Michael P. Hayball:
Transferring Information Across Medical Images of Different Modalities. ICPRAM 2018: 526-533 - [c46]Wojciech Dudzik, Jakub Nalepa, Michal Kawulok:
Automated Optimization of Non-linear Support Vector Machines for Binary Classification. INCoS 2018: 504-513 - [c45]Jakub Nalepa, Szymon Piechaczek, Michal Myller, Krzysztof Hrynczenko:
Multi-scale Voting Classifiers for Breast-Cancer Histology Images. INCoS 2018: 526-534 - [c44]Michal Marcinkiewicz, Jakub Nalepa, Pablo Ribalta Lorenzo, Wojciech Dudzik, Grzegorz Mrukwa:
Segmenting Brain Tumors from MRI Using Cascaded Multi-modal U-Nets. BrainLes@MICCAI (2) 2018: 13-24 - 2017
- [c43]Jakub Nalepa, Pablo Ribalta Lorenzo:
Convergence Analysis of PSO for Hyper-Parameter Selection in Deep Neural Networks. 3PGCIC 2017: 284-295 - [c42]Marcin Cwiek, Jakub Nalepa:
Spatial Planning as a Hexomino Puzzle. ACIIDS (1) 2017: 410-420 - [c41]Maksym Walczak, Izabela Burda, Jakub Nalepa, Michal Kawulok:
Segmenting Lungs from Whole-Body CT Scans. BDAS 2017: 403-414 - [c40]Pablo Ribalta Lorenzo, Jakub Nalepa, Luciano Sánchez Ramos, José Ranilla Pastor:
Hands-Free Research Workflow. EASE 2017: 70-73 - [c39]Miroslaw Blocho, Jakub Nalepa:
LCS-Based Selective Route Exchange Crossover for the Pickup and Delivery Problem with Time Windows. EvoCOP 2017: 124-140 - [c38]Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sánchez Ramos, José Ranilla Pastor:
Particle swarm optimization for hyper-parameter selection in deep neural networks. GECCO 2017: 481-488 - [c37]Pablo Ribalta Lorenzo, Jakub Nalepa, Luciano Sánchez Ramos, José Ranilla Pastor:
Hyper-parameter selection in deep neural networks using parallel particle swarm optimization. GECCO (Companion) 2017: 1864-1871 - [c36]Krzysztof Pawelczyk, Michal Kawulok, Jakub Nalepa, Michael P. Hayball, Sarah J. McQuaid, Vineet Prakash, Balaji Ganeshan:
Towards Detecting High-Uptake Lesions from Lung CT Scans Using Deep Learning. ICIAP (2) 2017: 310-320 - [c35]Jakub Nalepa, Michal Kawulok, Wojciech Dudzik:
Tuning and Evolving Support Vector Machine Models. ICMMI 2017: 418-428 - [c34]Miroslaw Blocho, Jakub Nalepa:
Complexity Analysis of the Parallel Memetic Algorithm for the Pickup and Delivery Problem with Time Windows. ICMMI 2017: 471-480 - [c33]Jakub Nalepa, Marcin Cwiek, Lukasz Zak:
Behind the Scenes of Deadline24: A Memetic Algorithm for the Modified Job Shop Scheduling Problem. ICMMI 2017: 502-512 - [c32]Michal Kawulok, Jakub Nalepa, Wojciech Dudzik:
An Alternating Genetic Algorithm for Selecting SVM Model and Training Set. MCPR 2017: 94-104 - [c31]Jakub Nalepa, Miroslaw Blocho:
A Parallel Memetic Algorithm for the Pickup and Delivery Problem with Time Windows. PDP 2017: 1-8 - 2016
- [c30]Jakub Nalepa, Miroslaw Blocho:
Temporally Adaptive Co-operation Schemes. 3PGCIC 2016: 145-156 - [c29]Jakub Nalepa, Miroslaw Blocho:
Enhanced Guided Ejection Search for the Pickup and Delivery Problem with Time Windows. ACIIDS (1) 2016: 388-398 - [c28]Marcin Cwiek, Jakub Nalepa, Marcin Dublanski:
How to Generate Benchmarks for Rich Routing Problems? ACIIDS (1) 2016: 399-409 - [c27]Maciej Papiez, Michal Kawulok, Jakub Nalepa:
Manifold Learning for Hand Pose Recognition: Evaluation Framework. BDAS 2016: 704-715 - [c26]Jakub Nalepa, Miroslaw Blocho:
Is Your Parallel Algorithm Correct? FedCSIS (Position Papers) 2016: 87-93 - [c25]Jakub Nalepa, Michal Kawulok:
The Smaller, the Better: Selecting Refined SVM Training Sets Using Adaptive Memetic Algorithm. GECCO (Companion) 2016: 165-166 - [c24]Michal Kawulok, Jakub Nalepa, Karolina Nurzynska, Bogdan Smolka:
In Search of Truth: Analysis of Smile Intensity Dynamics to Detect Deception. IBERAMIA 2016: 325-337 - 2015
- [c23]Jakub Nalepa, Miroslaw Blocho:
A Parallel Algorithm with the Search Space Partition for the Pickup and Delivery with Time Windows. 3PGCIC 2015: 92-99 - [c22]Jakub Nalepa, Krzysztof Siminski, Michal Kawulok:
Towards parameter-less support vector machines. ACPR 2015: 211-215 - [c21]Michal Kawulok, Jakub Nalepa:
Towards robust SVM training from weakly labeled large data sets. ACPR 2015: 464-468 - [c20]Miroslaw Blocho, Jakub Nalepa:
Impact of Parallel Memetic Algorithm Parameters on Its Efficacy. BDAS 2015: 299-308 - [c19]Jakub Nalepa, Janusz Szymanek, Michal Kawulok:
Real-Time People Counting from Depth Images. BDAS 2015: 387-397 - [c18]Jakub Nalepa, Marcin Cwiek, Michal Kawulok:
Adaptive memetic algorithm for the job shop scheduling problem. IJCNN 2015: 1-8 - [c17]Miroslaw Blocho, Jakub Nalepa:
A Parallel Algorithm for Minimizing the Fleet Size in the Pickup and Delivery Problem with Time Windows. EuroMPI 2015: 15:1-15:2 - 2014
- [c16]Jakub Nalepa, Michal Kawulok:
Fast and Accurate Hand Shape Classification. BDAS 2014: 364-373 - [c15]Michal Kawulok, Jolanta Kawulok, Jakub Nalepa, Bogdan Smolka:
Self-Adaptive Skin Segmentation in Color Images. CIARP 2014: 96-103 - [c14]Jakub Nalepa, Michal Kawulok:
Adaptive Genetic Algorithm to Select Training Data for Support Vector Machines. EvoApplications 2014: 514-525 - [c13]Jakub Nalepa, Michal Kawulok:
A memetic algorithm to select training data for support vector machines. GECCO 2014: 573-580 - [c12]Marcin Cwiek, Jakub Nalepa:
A fast genetic algorithm for the flexible job shop scheduling problem. GECCO (Companion) 2014: 1449-1450 - [c11]Jakub Nalepa:
Adaptive memetic algorithm for the vehicle routing problem with time windows. GECCO (Companion) 2014: 1467-1468 - [c10]Michal Kawulok, Jakub Nalepa:
Dynamically Adaptive Genetic Algorithm to Select Training Data for SVMs. IBERAMIA 2014: 242-254 - [c9]Jakub Nalepa, Janusz Szymanek, Michael P. Hayball, Stephen J. Brown, Balaji Ganeshan, Kenneth Miles:
Texture Analysis for Identifying Heterogeneity in Medical Images. ICCVG 2014: 446-453 - [c8]Michal Kawulok, Jakub Nalepa:
Hand pose estimation using support vector machines with evolutionary training. IWSSIP 2014: 87-90 - 2013
- [c7]Tomasz Grzejszczak, Jakub Nalepa, Michal Kawulok:
Real-Time Wrist Localization in Hand Silhouettes. CORES 2013: 439-449 - [c6]Jakub Nalepa, Zbigniew J. Czech:
New Selection Schemes in a Memetic Algorithm for the Vehicle Routing Problem with Time Windows. ICANNGA 2013: 396-405 - [c5]Michal Kawulok, Jolanta Kawulok, Jakub Nalepa, Maciej Papiez:
Skin detection using spatial analysis with adaptive seed. ICIP 2013: 3720-3724 - [c4]Jakub Nalepa, Tomasz Grzejszczak, Michal Kawulok:
Wrist Localization in Color Images for Hand Gesture Recognition. ICMMI 2013: 79-86 - [c3]Jakub Nalepa, Michal Kawulok:
Parallel Hand Shape Classification. ISM 2013: 401-402 - [c2]Jakub Nalepa, Miroslaw Blocho, Zbigniew J. Czech:
Co-operation Schemes for the Parallel Memetic Algorithm. PPAM (1) 2013: 191-201 - 2012
- [c1]Michal Kawulok, Jakub Nalepa:
Support Vector Machines Training Data Selection Using a Genetic Algorithm. SSPR/SPR 2012: 557-565
Data and Artifacts
- 2023
- [d1]Mariusz Bujny, Katarzyna Jesionek, Jakub Nalepa, Karol Miszalski-Jamka, Katarzyna Widawka-Zak, Sabina Wolny, Marcin Kostur:
Data from: Coronary artery segmentation in non-contrast calcium scoring CT images using deep learning. Zenodo, 2023
Informal and Other Publications
- 2024
- [i29]Mariusz Bujny, Katarzyna Jesionek, Jakub Nalepa, Karol Miszalski-Jamka, Katarzyna Widawka-Zak, Sabina Wolny, Marcin Kostur:
Coronary artery segmentation in non-contrast calcium scoring CT images using deep learning. CoRR abs/2403.02544 (2024) - [i28]Vladimir Zaigrajew, Hubert Baniecki, Lukasz Tulczyjew, Agata M. Wijata, Jakub Nalepa, Nicolas Longépé, Przemyslaw Biecek:
Red Teaming Models for Hyperspectral Image Analysis Using Explainable AI. CoRR abs/2403.08017 (2024) - [i27]Krzysztof Kotowski, Christoph Haskamp, Jacek Andrzejewski, Bogdan Ruszczak, Jakub Nalepa, Daniel Lakey, Peter Collins, Aybike Kolmas, Mauro Bartesaghi, Jose Martinez-Heras, Gabriele De Canio:
European Space Agency Benchmark for Anomaly Detection in Satellite Telemetry. CoRR abs/2406.17826 (2024) - [i26]Bogdan Ruszczak, Krzysztof Kotowski, David Evans, Jakub Nalepa:
The OPS-SAT benchmark for detecting anomalies in satellite telemetry. CoRR abs/2407.04730 (2024) - [i25]Artur Miroszewski, Marco Fellous Asiani, Jakub Mielczarek, Bertrand Le Saux, Jakub Nalepa:
In Search of Quantum Advantage: Estimating the Number of Shots in Quantum Kernel Methods. CoRR abs/2407.15776 (2024) - 2023
- [i24]Tomasz Tarasiewicz, Jakub Nalepa, Reuben A. Farrugia, Gianluca Valentino, Mang Chen, Johann A. Briffa, Michal Kawulok:
Multitemporal and multispectral data fusion for super-resolution of Sentinel-2 images. CoRR abs/2301.11154 (2023) - [i23]Artur Miroszewski, Jakub Mielczarek, Grzegorz Czelusta, Filip Szczepanek, Bartosz Grabowski, Bertrand Le Saux, Jakub Nalepa:
Detecting Clouds in Multispectral Satellite Images Using Quantum-Kernel Support Vector Machines. CoRR abs/2302.08270 (2023) - [i22]Maria Ferlin, Sylwia Majchrowska, Marta A. Plantykow, Alicja Kwasniwska, Agnieszka Mikolajczyk-Barela, Milena Olech, Jakub Nalepa:
On the Importance of Sign Labeling: The Hamburg Sign Language Notation System Case Study. CoRR abs/2302.10768 (2023) - [i21]Bartosz Grabowski, Maciej Ziaja, Michal Kawulok, Piotr Bosowski, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
Squeezing nnU-Nets with Knowledge Distillation for On-Board Cloud Detection. CoRR abs/2306.09886 (2023) - [i20]Artur Miroszewski, Jakub Mielczarek, Filip Szczepanek, Grzegorz Czelusta, Bartosz Grabowski, Bertrand Le Saux, Jakub Nalepa:
Optimizing Kernel-Target Alignment for cloud detection in multispectral satellite images. CoRR abs/2306.14515 (2023) - [i19]Artur Miroszewski, Jakub Mielczarek, Filip Szczepanek, Grzegorz Czelusta, Bartosz Grabowski, Bertrand Le Saux, Jakub Nalepa:
Cloud Detection in Multispectral Satellite Images Using Support Vector Machines With Quantum Kernels. CoRR abs/2307.07281 (2023) - [i18]Artur Miroszewski, Jakub Nalepa, Bertrand Le Saux, Jakub Mielczarek:
Quantum Machine Learning for Remote Sensing: Exploring potential and challenges. CoRR abs/2311.07626 (2023) - 2022
- [i17]Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
Graph Neural Networks Extract High-Resolution Cultivated Land Maps from Sentinel-2 Image Series. CoRR abs/2208.02349 (2022) - [i16]Lukasz Tulczyjew, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
A Multibranch Convolutional Neural Network for Hyperspectral Unmixing. CoRR abs/2208.02361 (2022) - [i15]Jakub Nalepa, Krzysztof Kotowski, Bartosz Machura, Szymon Adamski, Oskar Bozek, Bartosz Eksner, Bartosz Kokoszka, Tomasz Pekala, Mateusz Radom, Marek Strzelczak, Lukasz Zarudzki, Agata Krason, Filippo Arcadu, Jean Tessier:
Deep learning automates bidimensional and volumetric tumor burden measurement from MRI in pre- and post-operative glioblastoma patients. CoRR abs/2209.01402 (2022) - [i14]Pawel Kowaleczko, Tomasz Tarasiewicz, Maciej Ziaja, Daniel Kostrzewa, Jakub Nalepa, Przemyslaw Rokita, Michal Kawulok:
MuS2: A Benchmark for Sentinel-2 Multi-Image Super-Resolution. CoRR abs/2210.02745 (2022) - [i13]Bartosz Grabowski, Maciej Ziaja, Michal Kawulok, Nicolas Longépé, Bertrand Le Saux, Jakub Nalepa:
Self-Configuring nnU-Nets Detect Clouds in Satellite Images. CoRR abs/2210.13659 (2022) - 2019
- [i12]Michal Kawulok, Pawel Benecki, Szymon Piechaczek, Krzysztof Hrynczenko, Daniel Kostrzewa, Jakub Nalepa:
Deep Learning for Multiple-Image Super-Resolution. CoRR abs/1903.00440 (2019) - [i11]Jakub Nalepa, Michal Myller, Michal Kawulok:
Hyperspectral Data Augmentation. CoRR abs/1903.05580 (2019) - [i10]Michal Kawulok, Szymon Piechaczek, Krzysztof Hrynczenko, Pawel Benecki, Daniel Kostrzewa, Jakub Nalepa:
On training deep networks for satellite image super-resolution. CoRR abs/1906.06697 (2019) - [i9]Jakub Nalepa, Michal Myller, Michal Kawulok:
Transfer Learning for Segmenting Dimensionally-Reduced Hyperspectral Images. CoRR abs/1906.09631 (2019) - [i8]Jakub Nalepa, Pablo Ribalta Lorenzo, Michal Marcinkiewicz, Barbara Bobek-Billewicz, Pawel Wawrzyniak, Maksym Walczak, Michal Kawulok, Wojciech Dudzik, Grzegorz Mrukwa, Pawel Ulrych, Michael P. Hayball:
Fully-automated deep learning-powered system for DCE-MRI analysis of brain tumors. CoRR abs/1907.08303 (2019) - [i7]Jakub Nalepa, Michal Myller, Yasuteru Imai, Ken-ichi Honda, Tomomi Takeda, Marek Antoniak:
Unsupervised Segmentation of Hyperspectral Images Using 3D Convolutional Autoencoders. CoRR abs/1907.08870 (2019) - [i6]Jakub Nalepa, Lukasz Tulczyjew, Michal Myller, Michal Kawulok:
Segmenting Hyperspectral Images Using Spectral-Spatial Convolutional Neural Networks With Training-Time Data Augmentation. CoRR abs/1907.11935 (2019) - 2018
- [i5]Pablo Ribalta Lorenzo, Lukasz Tulczyjew, Michal Marcinkiewicz, Jakub Nalepa:
Band Selection from Hyperspectral Images Using Attention-based Convolutional Neural Networks. CoRR abs/1811.02667 (2018) - [i4]Jakub Nalepa, Michal Myller, Michal Kawulok:
Validating Hyperspectral Image Segmentation. CoRR abs/1811.03707 (2018) - 2017
- [i3]Miroslaw Blocho, Jakub Nalepa:
Complexity Analysis of the Parallel Guided Ejection Search for the Pickup and Delivery Problem with Time Windows. CoRR abs/1704.06724 (2017) - 2014
- [i2]Jakub Nalepa, Michal Kawulok:
Real-Time Hand Shape Classification. CoRR abs/1402.2673 (2014) - [i1]Jakub Nalepa, Zbigniew J. Czech:
A Parallel Memetic Algorithm to Solve the Vehicle Routing Problem with Time Windows. CoRR abs/1402.6942 (2014)
Coauthor Index
aka: Agata Wijata
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-08 21:28 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint