default search action
Pang-Ning Tan
Person information
- affiliation: Michigan State University, East Lansing, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j18]Mahya G. Z. Hashemi, Pang-Ning Tan, Ehsan Jalilvand, Brook Wilke, Hamed Alemohammad, Narendra N. Das:
Yield estimation from SAR data using patch-based deep learning and machine learning techniques. Comput. Electron. Agric. 226: 109340 (2024) - [c109]Barikisu Issaka, Young Anna Argyris, Pang-Ning Tan:
Conversational Agents as an Aid for Cancer Survivors' Information Search. HICSS 2024: 3788-3797 - [c108]Yue Deng, Asadullah Hill Galib, Pang-Ning Tan, Lifeng Luo:
Unraveling Block Maxima Forecasting Models with Counterfactual Explanation. KDD 2024: 562-573 - [i6]Anna Stephens, Francisco Santos, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Population Graph Cross-Network Node Classification for Autism Detection Across Sample Groups. CoRR abs/2401.05478 (2024) - 2023
- [c107]Anna Stephens, Francisco Santos, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Population Graph Cross-Network Node Classification for Autism Detection Across Sample Groups. ICDM (Workshops) 2023: 348-355 - [c106]Asadullah Hill Galib, Pang-Ning Tan, Lifeng Luo:
SimEXT: Self-supervised Representation Learning for Extreme Values in Time Series. ICDM 2023: 1031-1036 - [c105]Francisco Santos, Anna Stephens, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Influence Propagation for Linear Threshold Model with Graph Neural Networks. ICDM (Workshops) 2023: 1141-1148 - [c104]Asadullah Hill Galib, Andrew McDonald, Pang-Ning Tan, Lifeng Luo:
Self-Recover: Forecasting Block Maxima in Time Series from Predictors with Disparate Temporal Coverage Using Self-Supervised Learning. IJCAI 2023: 3723-3731 - 2022
- [c103]Boyang Liu, Pang-Ning Tan, Jiayu Zhou:
Unsupervised Anomaly Detection by Robust Density Estimation. AAAI 2022: 4101-4108 - [c102]Tyler Wilson, Pang-Ning Tan, Lifeng Luo:
DeepGPD: A Deep Learning Approach for Modeling Geospatio-Temporal Extreme Events. AAAI 2022: 4245-4253 - [c101]Young Anna Argyris, Nan Zhang, Bidhan Bashyal, Pang-Ning Tan:
Using Deep Learning to Identify Linguistic Features that Facilitate or Inhibit the Propagation of Anti- and Pro-Vaccine Content on Social Media. ICDH 2022: 107-116 - [c100]Farzan Masrour, Francisco Santos, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Fairness-Aware Graph Sampling for Network Analysis. ICDM 2022: 1107-1112 - [c99]Asadullah Hill Galib, Andrew McDonald, Tyler Wilson, Lifeng Luo, Pang-Ning Tan:
DeepExtrema: A Deep Learning Approach for Forecasting Block Maxima in Time Series Data. IJCAI 2022: 2980-2986 - [c98]Andrew McDonald, Pang-Ning Tan, Lifeng Luo:
COMET Flows: Towards Generative Modeling of Multivariate Extremes and Tail Dependence. IJCAI 2022: 3328-3334 - [c97]Francisco Santos, Junke Ye, Farzan Masrour, Pang-Ning Tan, Abdol-Hossein Esfahanian:
FACS-GCN: Fairness-Aware Cost-Sensitive Boosting of Graph Convolutional Networks. IJCNN 2022: 1-8 - [c96]Tyler Wilson, Andrew McDonald, Asadullah Hill Galib, Pang-Ning Tan, Lifeng Luo:
Beyond Point Prediction: Capturing Zero-Inflated & Heavy-Tailed Spatiotemporal Data with Deep Extreme Mixture Models. KDD 2022: 2020-2028 - [i5]Andrew McDonald, Pang-Ning Tan, Lifeng Luo:
COMET Flows: Towards Generative Modeling of Multivariate Extremes and Tail Dependence. CoRR abs/2205.01224 (2022) - [i4]Asadullah Hill Galib, Andrew McDonald, Tyler Wilson, Lifeng Luo, Pang-Ning Tan:
DeepExtrema: A Deep Learning Approach for Forecasting Block Maxima in Time Series Data. CoRR abs/2205.02441 (2022) - 2021
- [j17]Pouyan Hatami Bahman Beiglou, Lifeng Luo, Pang-Ning Tan, Lisi Pei:
Automated Analysis of the US Drought Monitor Maps With Machine Learning and Multiple Drought Indicators. Frontiers Big Data 4: 750536 (2021) - [j16]Jianpeng Xu, Jiayu Zhou, Pang-Ning Tan, Xi Liu, Lifeng Luo:
Spatio-Temporal Multi-Task Learning via Tensor Decomposition. IEEE Trans. Knowl. Data Eng. 33(6): 2764-2775 (2021) - [c95]Boyang Liu, Mengying Sun, Ding Wang, Pang-Ning Tan, Jiayu Zhou:
Learning Deep Neural Networks under Agnostic Corrupted Supervision. ICML 2021: 6957-6967 - [c94]Boyang Liu, Ding Wang, Kaixiang Lin, Pang-Ning Tan, Jiayu Zhou:
RCA: A Deep Collaborative Autoencoder Approach for Anomaly Detection. IJCAI 2021: 1505-1511 - [c93]Ding Wang, Pang-Ning Tan:
JOHAN: A Joint Online Hurricane Trajectory and Intensity Forecasting Framework. KDD 2021: 1677-1685 - [i3]Boyang Liu, Mengying Sun, Ding Wang, Pang-Ning Tan, Jiayu Zhou:
Learning Deep Neural Networks under Agnostic Corrupted Supervision. CoRR abs/2102.06735 (2021) - 2020
- [c92]Farzan Masrour, Tyler Wilson, Heng Yan, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Bursting the Filter Bubble: Fairness-Aware Network Link Prediction. AAAI 2020: 841-848 - [c91]Ding Wang, Boyang Liu, Pang-Ning Tan, Lifeng Luo:
OMuLeT: Online Multi-Lead Time Location Prediction for Hurricane Trajectory Forecasting. AAAI 2020: 963-970 - [c90]Farzan Masrour, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Fairness Perception from a Network-Centric Perspective. ICDM 2020: 1178-1183 - [c89]Tyler Wilson, Pang-Ning Tan, Lifeng Luo:
Convolutional Methods for Predictive Modeling of Geospatial Data. SDM 2020: 28-36 - [i2]Farzan Masrour, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Fairness Perception from a Network-Centric Perspective. CoRR abs/2010.05887 (2020)
2010 – 2019
- 2019
- [b2]Pang-Ning Tan, Michael S. Steinbach, Anuj Karpatne, Vipin Kumar:
Introduction to Data Mining (Second Edition). Pearson 2019 - [c88]Courtland VanDam, Farzan Masrour, Pang-Ning Tan, Tyler Wilson:
You have been CAUTE!: early detection of compromised accounts on social media. ASONAM 2019: 25-32 - [c87]Farzan Masrour, Pang-Ning Tan, Abdol-Hossein Esfahanian:
OPTANE: an OPtimal transport algorithm for NEtwork alignment. ASONAM 2019: 448-451 - [c86]Xi Liu, Tyler Wilson, Pang-Ning Tan, Lifeng Luo:
Hierarchical LSTM Framework for Long-Term Sea Surface Temperature Forecasting. DSAA 2019: 41-50 - [c85]Boyang Liu, Pang-Ning Tan, Jiayu Zhou:
Augmented Multi-Task Learning by Optimal Transport. SDM 2019: 19-27 - [c84]Qi Wang, Claire Boudreau, Qixing Luo, Pang-Ning Tan, Jiayu Zhou:
Deep Multi-view Information Bottleneck. SDM 2019: 37-45 - [i1]Shuai Yuan, Pang-Ning Tan, Kendra Spence Cheruvelil, Sarah M. Collins, Patricia A. Soranno:
Spatially Constrained Spectral Clustering Algorithms for Region Delineation. CoRR abs/1905.08451 (2019) - 2018
- [j15]Jingbo Meng, Wei Peng, Pang-Ning Tan, Wuyu Liu, Ying Cheng, Arram Bae:
Diffusion size and structural virality: The effects of message and network features on spreading health information on twitter. Comput. Hum. Behav. 89: 111-120 (2018) - [c83]Courtland VanDam, Pang-Ning Tan, Jiliang Tang, Hamid Karimi:
CADET: A Multi-View Learning Framework for Compromised Account Detection on Twitter. ASONAM 2018: 471-478 - [c82]Farzan Masrour, Pang-Ning Tan, Abdol-Hossein Esfahanian, Courtland VanDam:
Attributed Network Representation Learning Approaches for Link Prediction. ASONAM 2018: 560-563 - [c81]Tyler Wilson, Pang-Ning Tan, Lifeng Luo:
A Low Rank Weighted Graph Convolutional Approach to Weather Prediction. ICDM 2018: 627-636 - [c80]Xi Liu, Pang-Ning Tan, Zubin Abraham, Lifeng Luo, Pouyan Hatami:
Distribution Preserving Multi-task Regression for Spatio-Temporal Data. ICDM 2018: 1134-1139 - [c79]Qi Wang, Pang-Ning Tan, Jiayu Zhou:
Imputing Structured Missing Values in Spatial Data with Clustered Adversarial Matrix Factorization. ICDM 2018: 1284-1289 - [c78]Jianpeng Xu, Xi Liu, Tyler Wilson, Pang-Ning Tan, Pouyan Hatami, Lifeng Luo:
MUSCAT: Multi-Scale Spatio-Temporal Learning with Application to Climate Modeling. IJCAI 2018: 2912-2918 - [c77]Boyang Liu, Pang-Ning Tan, Jiayu Zhou:
Enhancing Predictive Modeling of Nested Spatial Data through Group-Level Feature Disaggregation. KDD 2018: 1784-1793 - [c76]Xi Liu, Pang-Ning Tan, Lei Liu:
STARS: Soft Multi-Task Learning for Activity Recognition from Multi-Modal Sensor Data. PAKDD (2) 2018: 571-583 - [r6]Pang-Ning Tan:
Neural Networks. Encyclopedia of Database Systems (2nd ed.) 2018 - [r5]Pang-Ning Tan:
Receiver Operating Characteristic. Encyclopedia of Database Systems (2nd ed.) 2018 - 2017
- [j14]Jianpeng Xu, Pang-Ning Tan, Jiayu Zhou, Lifeng Luo:
Online Multi-Task Learning Framework for Ensemble Forecasting. IEEE Trans. Knowl. Data Eng. 29(6): 1268-1280 (2017) - [c75]Shuai Yuan, Jiayu Zhou, Pang-Ning Tan, C. Emi Fergus, Tyler Wagner, Patricia A. Soranno:
Multi-level Multi-task Learning for Modeling Cross-Scale Interactions in Nested Geospatial Data. ICDM 2017: 1153-1158 - [c74]Shuai Yuan, Pang-Ning Tan, Kendra Spence Cheruvelil, C. Emi Fergus, Nicholas K. Skaff, Patricia A. Soranno:
Hash-Based Feature Learning for Incomplete Continuous-Valued Data. SDM 2017: 678-686 - [c73]Xi Liu, Pang-Ning Tan, Lei Liu, Steven J. Simske:
Automated classification of EEG signals for predicting students' cognitive state during learning. WI 2017: 442-450 - [c72]Courtland VanDam, Jiliang Tang, Pang-Ning Tan:
Understanding compromised accounts on Twitter. WI 2017: 737-744 - 2016
- [c71]Jianpeng Xu, Jiayu Zhou, Pang-Ning Tan, Xi Liu, Lifeng Luo:
WISDOM: Weighted incremental spatio-temporal multi-task learning via tensor decomposition. IEEE BigData 2016: 522-531 - [c70]Ding Wang, Prakash Mandayam Comar, Pang-Ning Tan:
Crowdsourcing of network data. IJCNN 2016: 2204-2211 - [c69]Xi Liu, Han Hee Song, Mario Baldi, Pang-Ning Tan:
Macro-scale mobile app market analysis using customized hierarchical categorization. INFOCOM 2016: 1-9 - [c68]Jianpeng Xu, Kaixiang Lin, Pang-Ning Tan, Jiayu Zhou:
Synergies that Matter: Efficient Interaction Selection via Sparse Factorization Machine. SDM 2016: 108-116 - [c67]Jianpeng Xu, Pang-Ning Tan, Lifeng Luo, Jiayu Zhou:
GSpartan: a Geospatio-Temporal Multi-task Learning Framework for Multi-location Prediction. SDM 2016: 657-665 - [c66]Courtland VanDam, Pang-Ning Tan:
Detecting hashtag hijacking from Twitter. WebSci 2016: 370-371 - 2015
- [c65]Lei Liu, Pang-Ning Tan, Xi Liu:
MF-Tree: Matrix Factorization Tree for Large Multi-Class Learning. CIKM 2015: 881-890 - [c64]Shuai Yuan, Pang-Ning Tan, Kendra Spence Cheruvelil, Sarah M. Collins, Patricia A. Soranno:
Constrained spectral clustering for regionalization: Exploring the trade-off between spatial contiguity and landscape homogeneity. DSAA 2015: 1-10 - [c63]Jianpeng Xu, Jiayu Zhou, Pang-Ning Tan:
FORMULA: FactORized MUlti-task LeArning for task discovery in personalized medical models. SDM 2015: 496-504 - 2014
- [j13]Zubin Abraham, Pang-Ning Tan, Perdinan, Julie A. Winkler, Shiyuan Zhong, Malgorzata Liszewska:
Contour regression: A distribution-regularized regression framework for climate modeling. Stat. Anal. Data Min. 7(4): 272-281 (2014) - [c62]Lei Liu, Sabyasachi Saha, Ruben Torres, Jianpeng Xu, Pang-Ning Tan, Antonio Nucci, Marco Mellia:
Detecting malicious clients in ISP networks using HTTP connectivity graph and flow information. ASONAM 2014: 150-157 - [c61]Jianpeng Xu, Pang-Ning Tan, Lifeng Luo:
ORION: Online Regularized Multi-task Regression and Its Application to Ensemble Forecasting. ICDM 2014: 1061-1066 - [e3]Mohammed Javeed Zaki, Zoran Obradovic, Pang-Ning Tan, Arindam Banerjee, Chandrika Kamath, Srinivasan Parthasarathy:
Proceedings of the 2014 SIAM International Conference on Data Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014. SIAM 2014, ISBN 978-1-61197-344-0 [contents] - 2013
- [c60]Prakash Mandayam Comar, Lei Liu, Sabyasachi Saha, Pang-Ning Tan, Antonio Nucci:
Combining supervised and unsupervised learning for zero-day malware detection. INFOCOM 2013: 2022-2030 - [c59]Zubin Abraham, Pang-Ning Tan, Perdinan, Julie Winkler, Shiyuan Zhong, Malgorzata Liszewska:
Position Preserving Multi-Output Prediction. ECML/PKDD (2) 2013: 320-335 - [c58]Lei Liu, Prakash Mandayam Comar, Antonio Nucci, Sabyasachi Saha, Pang-Ning Tan:
Missing or Inapplicable: Treatment of Incomplete Continuous-valued Features in Supervised Learning. SDM 2013: 46-54 - [c57]Zubin Abraham, Malgorzata Liszewska, Perdinan, Pang-Ning Tan, Julie Winkler, Shiyuan Zhong:
Distribution Regularized Regression Framework for Climate Modeling. SDM 2013: 333-341 - [p3]Ronald Nussbaum, Abdol-Hossein Esfahanian, Pang-Ning Tan:
Clustering Social Networks Using Distance-Preserving Subgraphs. The Influence of Technology on Social Network Analysis and Mining 2013: 331-349 - 2012
- [j12]Prakash Mandayam Comar, Pang-Ning Tan, Anil K. Jain:
Simultaneous classification and community detection on heterogeneous network data. Data Min. Knowl. Discov. 25(3): 420-449 (2012) - [j11]Prakash Mandayam Comar, Pang-Ning Tan, Anil K. Jain:
A framework for joint community detection across multiple related networks. Neurocomputing 76(1): 93-104 (2012) - [c56]Prakash Mandayam Comar, Lei Liu, Sabyasachi Saha, Antonio Nucci, Pang-Ning Tan:
Weighted linear kernel with tree transformed features for malware detection. CIKM 2012: 2287-2290 - [c55]Lei Liu, Prakash Mandayam Comar, Sabyasachi Saha, Pang-Ning Tan, Antonio Nucci:
Recursive NMF: Efficient label tree learning for large multi-class problems. ICPR 2012: 2148-2151 - [e2]Pang-Ning Tan, Sanjay Chawla, Chin Kuan Ho, James Bailey:
Advances in Knowledge Discovery and Data Mining - 16th Pacific-Asia Conference, PAKDD 2012, Kuala Lumpur, Malaysia, May 29-June 1, 2012, Proceedings, Part I. Lecture Notes in Computer Science 7301, Springer 2012, ISBN 978-3-642-30216-9 [contents] - [e1]Pang-Ning Tan, Sanjay Chawla, Chin Kuan Ho, James Bailey:
Advances in Knowledge Discovery and Data Mining - 16th Pacific-Asia Conference, PAKDD 2012, Kuala Lumpur, Malaysia, May 29 - June 1, 2012, Proceedings, Part II. Lecture Notes in Computer Science 7302, Springer 2012, ISBN 978-3-642-30219-0 [contents] - 2011
- [j10]Samah Jamal Fodeh, William F. Punch, Pang-Ning Tan:
On ontology-driven document clustering using core semantic features. Knowl. Inf. Syst. 28(2): 395-421 (2011) - [c54]Zubin Abraham, Pang-Ning Tan, Fan Xin:
Smoothed Quantile Regression for Statistical Downscaling of Extreme Events in Climate Modeling. CIDU 2011: 92-106 - [c53]Prakash Mandayam Comar, Pang-Ning Tan, Anil K. Jain:
LinkBoost: A Novel Cost-Sensitive Boosting Framework for Community-Level Network Link Prediction. ICDM 2011: 131-140 - [c52]Feilong Chen, Supranamaya Ranjan, Pang-Ning Tan:
Detecting bots via incremental LS-SVM learning with dynamic feature adaptation. KDD 2011: 386-394 - [p2]Jerry Scripps, Ronald Nussbaum, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Link-Based Network Mining. Structural Analysis of Complex Networks 2011: 403-419 - 2010
- [j9]Jerry Scripps, Pang-Ning Tan:
Constrained overlapping clusters: minimizing the negative effects of bridge-nodes. Stat. Anal. Data Min. 3(1): 20-37 (2010) - [j8]Haibin Cheng, Pang-Ning Tan, Rong Jin:
Efficient Algorithm for Localized Support Vector Machine. IEEE Trans. Knowl. Data Eng. 22(4): 537-549 (2010) - [c51]Ronald Nussbaum, Abdol-Hossein Esfahanian, Pang-Ning Tan:
Clustering Social Networks Using Distance-Preserving Subgraphs. ASONAM 2010: 380-385 - [c50]Prakash Mandayam Comar, Pang-Ning Tan, Anil Kumar Jain:
Multi task learning on multiple related networks. CIKM 2010: 1737-1740 - [c49]Zubin Abraham, Pang-Ning Tan:
An Integrated Framework for Simultaneous Classification and Regression of Time-Series Data. SDM 2010: 653-664 - [c48]Lei Liu, Pang-Ning Tan:
A Framework for Co-classification of Articles and Users in Wikipedia. Web Intelligence 2010: 212-215 - [c47]Prakash Mandayam Comar, Pang-Ning Tan, Anil Kumar Jain:
Identifying Cohesive Subgroups and Their Correspondences in Multiple Related Networks. Web Intelligence 2010: 476-483
2000 – 2009
- 2009
- [c46]Jerry Scripps, Pang-Ning Tan, Feilong Chen, Abdol-Hossein Esfahanian:
A Matrix Alignment Approach for Collective Classification. ASONAM 2009: 155-159 - [c45]Ronald Nussbaum, Abdol-Hossein Esfahanian, Pang-Ning Tan:
History-Based Email Prioritization. ASONAM 2009: 364-365 - [c44]Feilong Chen, Pang-Ning Tan, Anil K. Jain:
A co-classification framework for detecting web spam and spammers in social media web sites. CIKM 2009: 1807-1810 - [c43]Zubin Abraham, Pang-Ning Tan:
A Semi-supervised Framework for Simultaneous Classification and Regression of Zero-Inflated Time Series Data with Application to Precipitation Prediction. ICDM Workshops 2009: 644-649 - [c42]Jerry Scripps, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Measuring the effects of preprocessing decisions and network forces in dynamic network analysis. KDD 2009: 747-756 - [c41]Samah Jamal Fodeh, William F. Punch, Pang-Ning Tan:
Combining statistics and semantics via ensemble model for document clustering. SAC 2009: 1446-1450 - [c40]Haibin Cheng, Pang-Ning Tan, Christopher Potter, Steven A. Klooster:
Detection and Characterization of Anomalies in Multivariate Time Series. SDM 2009: 413-424 - [r4]Hui Xiong, Michael S. Steinbach, Pang-Ning Tan, Vipin Kumar, Wenjun Zhou:
Pattern Preserving Clustering. Encyclopedia of Data Warehousing and Mining 2009: 1505-1510 - [r3]Pang-Ning Tan:
Neural Networks. Encyclopedia of Database Systems 2009: 1906-1909 - [r2]Pang-Ning Tan:
Receiver Operating Characteristic. Encyclopedia of Database Systems 2009: 2349-2352 - 2008
- [j7]H. D. K. Moonesinghe, Pang-Ning Tan:
Outrank: a Graph-Based Outlier Detection Framework Using Random Walk. Int. J. Artif. Intell. Tools 17(1): 19-36 (2008) - [c39]Haibin Cheng, Pang-Ning Tan, Christopher Potter, Steven A. Klooster:
Data mining for visual exploration and detection of ecosystem disturbances. GIS 2008: 60 - [c38]Haibin Cheng, Pang-Ning Tan, Christopher Potter, Steven A. Klooster:
A Robust Graph-Based Algorithm for Detection and Characterization of Anomalies in Noisy Multivariate Time Series. ICDM Workshops 2008: 349-358 - [c37]Jerry Scripps, Pang-Ning Tan, Feilong Chen, Abdol-Hossein Esfahanian:
A matrix alignment approach for link prediction. ICPR 2008: 1-4 - [c36]Haibin Cheng, Ruofei Zhang, Yefei Peng, Jianchang Mao, Pang-Ning Tan:
Maximum Margin Active Learning for Sequence Labeling with Different Length. ICDM 2008: 345-359 - [c35]Haibin Cheng, Pang-Ning Tan:
Semi-supervised learning with data calibration for long-term time series forecasting. KDD 2008: 133-141 - [c34]Feilong Chen, Jerry Scripps, Pang-Ning Tan:
Link Mining for a Social Bookmarking Web Site. Web Intelligence 2008: 169-175 - [p1]Shyam Boriah, Vipin Kumar, Michael S. Steinbach, Pang-Ning Tan, Christopher Potter, Steven A. Klooster:
Detecting Ecosystem Disturbances and Land Cover Change Using Data Mining. Next Generation of Data Mining 2008 - 2007
- [c33]Hamed Valizadegan, Pang-Ning Tan:
A Prototype-driven Framework for Change Detection in Data Stream Classification. CIDM 2007: 88-95 - [c32]Haibin Cheng, Pang-Ning Tan, Jon Sticklen, William F. Punch:
Recommendation via Query Centered Random Walk on K-Partite Graph. ICDM 2007: 457-462 - [c31]Jerry Scripps, Pang-Ning Tan, Abdol-Hossein Esfahanian:
Exploration of Link Structure and Community-Based Node Roles in Network Analysis. ICDM 2007: 649-654 - [c30]Samah Jamal Fodeh, Pang-Ning Tan:
Incorporating Background Knowledge for Subjective Rule Evaluation. ICTAI (2) 2007: 148-155 - [c29]H. D. K. Moonesinghe, Hamed Valizadegan, Samah Jamal Fodeh, Pang-Ning Tan:
A Probabilistic Substructure-Based Approach for Graph Classification. ICTAI (1) 2007: 346-349 - [c28]Hamed Valizadegan, Pang-Ning Tan:
Kernel Based Detection of Mislabeled Training Examples. SDM 2007: 309-319 - [c27]Haibin Cheng, Pang-Ning Tan, Rong Jin:
Localized Support Vector Machine and Its Efficient Algorithm. SDM 2007: 461-466 - 2006
- [j6]Hui Xiong, Pang-Ning Tan, Vipin Kumar:
Hyperclique pattern discovery. Data Min. Knowl. Discov. 13(2): 219-242 (2006) - [j5]Bo Wang, Sohraab Soltani, Jonathan K. Shapiro, Pang-Ning Tan:
Local Detection of Selfish Routing Behavior in Ad Hoc Networks. J. Interconnect. Networks 7(1): 133-146 (2006) - [j4]Hui Xiong, Shashi Shekhar, Pang-Ning Tan, Vipin Kumar:
TAPER: A Two-Step Approach for All-Strong-Pairs Correlation Query in Large Databases. IEEE Trans. Knowl. Data Eng. 18(4): 493-508 (2006) - [c26]Jing Gao, Pang-Ning Tan:
Converting Output Scores from Outlier Detection Algorithms into Probability Estimates. ICDM 2006: 212-221 - [c25]H. D. K. Moonesinghe, Samah Jamal Fodeh, Pang-Ning Tan:
Frequent Closed Itemset Mining Using Prefix Graphs with an Efficient Flow-Based Pruning Strategy. ICDM 2006: 426-435 - [c24]Brian D. Connelly, Christopher W. Bowron, Li Xiao, Pang-Ning Tan, Chen Wang:
Adaptively Routing P2P Queries Using Association Analysis. ICPP 2006: 281-288 - [c23]H. D. K. Moonesinghe, Pang-Ning Tan:
Outlier Detection Using Random Walks. ICTAI 2006: 532-539 - [c22]Haibin Cheng, Pang-Ning Tan, Jing Gao, Jerry Scripps:
Multistep-Ahead Time Series Prediction. PAKDD 2006: 765-774 - [c21]Jing Gao, Haibin Cheng, Pang-Ning Tan:
Semi-supervised outlier detection. SAC 2006: 635-636 - [c20]Jerry Scripps, Pang-Ning Tan:
Clustering in the Presence of Bridge-Nodes. SDM 2006: 270-281 - [c19]Jing Gao, Pang-Ning Tan, Haibin Cheng:
Semi-Supervised Clustering with Partial Background Information. SDM 2006: 489-493 - [c18]Jing Gao, Haibin Cheng, Pang-Ning Tan:
A Novel Framework for Incorporating Labeled Examples into Anomaly Detection. SDM 2006: 594-598 - 2005
- [b1]Pang-Ning Tan, Michael S. Steinbach, Vipin Kumar:
Introduction to Data Mining. Addison-Wesley 2005, ISBN 0-321-32136-7 - [c17]Bo Wang, Sohraab Soltani, Jonathan K. Shapiro, Pang-Ning Tan:
Local Detection of Selfish Routing Behavior in Ad Hoc Networks. ISPAN 2005: 392-399 - [c16]Jing Gao, Jianzhong Li, Zhaogong Zhang, Pang-Ning Tan:
An Incremental Data Stream Clustering Algorithm Based on Dense Units Detection. PAKDD 2005: 420-425 - 2004
- [j3]Pang-Ning Tan, Vipin Kumar, Jaideep Srivastava:
Selecting the right objective measure for association analysis. Inf. Syst. 29(4): 293-313 (2004) - [c15]Behrouz Minaei-Bidgoli, Pang-Ning Tan, William F. Punch:
Mining interesting contrast rules for a web-based educational system. ICMLA 2004: 320-327 - [c14]Michael S. Steinbach, Pang-Ning Tan, Vipin Kumar:
Support envelopes: a technique for exploring the structure of association patterns. KDD 2004: 296-305 - [c13]Hui Xiong, Shashi Shekhar, Pang-Ning Tan, Vipin Kumar:
Exploiting a support-based upper bound of Pearson's correlation coefficient for efficiently identifying strongly correlated pairs. KDD 2004: 334-343 - [c12]Michael S. Steinbach, Pang-Ning Tan, Hui Xiong, Vipin Kumar:
Generalizing the notion of support. KDD 2004: 689-694 - [c11]Pang-Ning Tan, Rong Jin:
Ordering patterns by combining opinions from multiple sources. KDD 2004: 695-700 - [c10]Aysel Ozgur, Pang-Ning Tan, Vipin Kumar:
RBA: An Integrated Framework for Regression based on Association Rules. SDM 2004: 210-221 - [c9]Hui Xiong, Michael S. Steinbach, Pang-Ning Tan, Vipin Kumar:
HICAP: Hierarchical Clustering with Pattern Preservation. SDM 2004: 279-290 - [r1]Vipin Kumar, Pang-Ning Tan, Michael S. Steinbach:
Data Mining. Handbook of Data Structures and Applications 2004 - 2003
- [c8]Hui Xiong, Pang-Ning Tan, Vipin Kumar:
Mining Strong Affinity Association Patterns in Data Sets with Skewed Support Distribution. ICDM 2003: 387-394 - [c7]Michael S. Steinbach, Pang-Ning Tan, Vipin Kumar, Steven A. Klooster, Christopher Potter:
Discovery of climate indices using clustering. KDD 2003: 446-455 - 2002
- [j2]Pang-Ning Tan, Vipin Kumar:
Discovery of Web Robot Sessions Based on their Navigational Patterns. Data Min. Knowl. Discov. 6(1): 9-35 (2002) - [c6]Pang-Ning Tan, Vipin Kumar, Jaideep Srivastava:
Selecting the right interestingness measure for association patterns. KDD 2002: 32-41 - [c5]Vipin Kumar, Mahesh V. Joshi, Eui-Hong Han, Pang-Ning Tan, Michael S. Steinbach:
High Performance Data Mining. VECPAR 2002: 111-125 - 2001
- [c4]Pang-Ning Tan, Vipin Kumar:
Mining Indirect Associations in Web Data. WEBKDD 2001: 145-166 - 2000
- [j1]Jaideep Srivastava, Robert Cooley, Mukund Deshpande, Pang-Ning Tan:
Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. SIGKDD Explor. 1(2): 12-23 (2000) - [c3]Pang-Ning Tan, Hannah Blau, Steven A. Harp, Robert P. Goldman:
Textual data mining of service center call records. KDD 2000: 417-423 - [c2]Pang-Ning Tan, Vipin Kumar, Jaideep Srivastava:
Indirect Association: Mining Higher Order Dependencies in Data. PKDD 2000: 632-637
1990 – 1999
- 1999
- [c1]Robert Cooley, Pang-Ning Tan, Jaideep Srivastava:
Discovery of Interesting Usage Patterns from Web Data. WEBKDD 1999: 163-182
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:08 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint