default search action
Yuta Shiratori
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c10]Takayuki Kobayashi, Shimpei Shimizu, Akira Kawai, Masanori Nakamura, Masashi Abe, Takushi Kazama, Takeshi Umeki, Munehiko Nagatani, Kosuke Kimura, Hitoshi Wakita, Yuta Shiratori, Fukutaro Hamaoka, Hiroshi Yamazaki, Hiroyuki Takahashi, Yutaka Miyamoto:
C+L+U-Band 14.85-THz WDM Transmission Over 80-km-Span G.654.E Fiber with Hybrid PPLN-OPA/EDFA U-Band Lumped Repeater Using 144-Gbaud PCS-QAM Signals. OFC 2024: 1-3 - [c9]Masanori Nakamura, Munehiko Nagatani, Hiroshi Yamazaki, Teruo Jyo, Miwa Mutoh, Yuta Shiratori, Hitoshi Wakita, Hiroki Taniguchi, Shuto Yamamoto, Fukutaro Hamaoka, Takayuki Kobayashi, Hiroyuki Takahashi, Yutaka Miyamoto:
AMUX-based Bandwidth Tripler with Time-interleaved Nonlinear Digital Pre-distortion Enabling 216-GBd PS-PAM8 Signal. OFC 2024: 1-3 - [c8]Hitoshi Wakita, Munehiko Nagatani, Yoshihiro Ogiso, Masanori Nakamura, Fukutaro Hamaoka, Yuta Shiratori, Takayuki Kobayashi, Yutaka Miyamoto, Hiroyuki Takahashi:
100-GHz-bandwidth InP-based On-board Coherent Tx Front-end enabling 2-Tb/s/λ Optical Transmission. OFC 2024: 1-3 - 2023
- [c7]Teruo Jyo, Munehiko Nagatani, Miwa Mutoh, Yuta Shiratori, Hitoshi Wakita, Hiroyuki Takahashi:
A DC-to-150-GHz InP-DHBT Active Combiner Module for Ultra-Broadband Signal Generation. BCICTS 2023: 195-198 - [c6]Masanori Nakamura, Hiroki Taniguchi, Shuto Yamamoto, Fukutaro Hamaoka, Munehiko Nagatani, Teruo Jyo, Miwa Mutoh, Yuta Shiratori, Hitoshi Wakita, Takayuki Kobayashi, Hiroyuki Takahashi, Yutaka Miyamoto:
Beyond 200-GBd QAM Signal Detection Based on Trellis-path-limited Sequence Estimation Supporting Soft-decision Forward Error Correction. OFC 2023: 1-3 - 2022
- [c5]Teruo Jyo, Hiroshi Hamada, Munehiko Nagatani, Hitoshi Wakita, Ibrahim Abdo, Miwa Mutoh, Yuta Shiratori, Kenichi Okada, Atsushi Shirane, Hiroyuki Takahashi:
A 220-294 GHz Power Amplifier with 10-dBm Psat and 2.2% PAE in 250-nm InP DHBT. BCICTS 2022: 152-155 - [c4]Munehiko Nagatani, Hitoshi Wakita, Teruo Jyo, Tsutomu Takeya, Hiroshi Yamazaki, Yoshihiro Ogiso, Miwa Mutoh, Yuta Shiratori, Minoru Ida, Fukutaro Hamaoka, Masanori Nakamura, Takayuki Kobayashi, Hiroyuki Takahashi, Yutaka Miyamoto:
110-GHz-Bandwidth InP-HBT AMUX/ADEMUX Circuits for Beyond-1-Tb/s/ch Digital Coherent Optical Transceivers. CICC 2022: 1-8 - 2021
- [c3]Teruo Jyo, Munehiko Nagatani, Miwa Mutoh, Yuta Shiratori, Hitoshi Wakita, Hiroyuki Takahashi:
An Over 130-GHz-Bandwidth InP-DHBT Baseband Amplifier Module. BCICTS 2021: 1-4 - 2020
- [c2]Yuta Shiratori, Takuya Hoshi, Hideaki Matsuzaki:
Ultra-high Speed InP/GaAsSb-based Type-II Double-heterojunction Bipolar Transistors and Transfer Technology onto SiC Substrate. BCICTS 2020: 1-4
2010 – 2019
- 2019
- [j3]Takuya Hoshi, Norihide Kashio, Yuta Shiratori, Kenji Kurishima, Minoru Ida, Hideaki Matsuzaki:
InGaP/GaAsSb/InGaAsSb double heterojunction bipolar transistors with 703-GHz fmax and 5.4-V breakdown voltage. IEICE Electron. Express 16(3): 20181125 (2019) - 2014
- [j2]Yuta Shiratori, Takashi Izumi, Keisuke Sano, Yuki Shibuta, Mitsuho Yamada:
Toward Producing 3D Effects That Are Easily Viewed without Eye Strain or Fatigue. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 97-A(2): 543-546 (2014)
2000 – 2009
- 2009
- [c1]Seiya Kasai, Yuta Shiratori, Kensuke Miura, Nan-Jian Wu:
Multi-path Switching Device Utilizing a Multi-terminal Nanowire Junction for MDD-Based Logic Circuit. ISMVL 2009: 331-336 - 2007
- [j1]Seiya Kasai, Tatsuya Nakamura, Yuta Shiratori:
Multiple Path Switching Device Utilizing Size-Controlled Nano-Schottky Wrap Gates for MDD-Based Logic Circuits. J. Multiple Valued Log. Soft Comput. 13(3): 267-277 (2007)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:05 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint