default search action
Peter Bühlmann
Person information
- affiliation: ETH Zürich, Switzerland
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j40]Christoph Schultheiss, Peter Bühlmann:
Assessing the Overall and Partial Causal Well-Specification of Nonlinear Additive Noise Models. J. Mach. Learn. Res. 25: 159:1-159:41 (2024) - 2023
- [j39]Malte Londschien, Peter Bühlmann, Solt Kovács:
Random Forests for Change Point Detection. J. Mach. Learn. Res. 24: 216:1-216:45 (2023) - [j38]Jeffrey Näf, Corinne Emmenegger, Peter Bühlmann, Nicolai Meinshausen:
Confidence and Uncertainty Assessment for Distributional Random Forests. J. Mach. Learn. Res. 24: 366:1-366:77 (2023) - [j37]Fernando Marmolejo-Ramos, Mauricio Tejo, Marek Brabec, Jakub Kuzilek, Srecko Joksimovic, Vitomir Kovanovic, Jorge González, Thomas Kneib, Peter Bühlmann, Lucas Kook, Guillermo Briseño-Sánchez, Raydonal Ospina:
Distributional regression modeling via generalized additive models for location, scale, and shape: An overview through a data set from learning analytics. WIREs Data Mining Knowl. Discov. 13(1) (2023) - 2022
- [j36]Kim Philipp Jablonski, Martin Pirkl, Domagoj Cevid, Peter Bühlmann, Niko Beerenwinkel:
Identifying cancer pathway dysregulations using differential causal effects. Bioinform. 38(6): 1550-1559 (2022) - [j35]Martin Emil Jakobsen, Rajen Dinesh Shah, Peter Bühlmann, Jonas Peters:
Structure Learning for Directed Trees. J. Mach. Learn. Res. 23: 159:1-159:97 (2022) - [j34]Cyrill Scheidegger, Julia Hörrmann, Peter Bühlmann:
The Weighted Generalised Covariance Measure. J. Mach. Learn. Res. 23: 273:1-273:68 (2022) - [j33]Domagoj Cevid, Loris Michel, Jeffrey Näf, Peter Bühlmann, Nicolai Meinshausen:
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression. J. Mach. Learn. Res. 23: 333:1-333:79 (2022) - [j32]Lucas Kook, Beate Sick, Peter Bühlmann:
Distributional anchor regression. Stat. Comput. 32(3): 39 (2022) - 2021
- [j31]Malte Londschien, Solt Kovács, Peter Bühlmann:
Change-Point Detection for Graphical Models in the Presence of Missing Values. J. Comput. Graph. Stat. 30(3): 768-779 (2021) - [j30]Yuansi Chen, Peter Bühlmann:
Domain adaptation under structural causal models. J. Mach. Learn. Res. 22: 261:1-261:80 (2021) - 2020
- [j29]Claude Renaux, Laura Buzdugan, Markus Kalisch, Peter Bühlmann:
Hierarchical inference for genome-wide association studies: a view on methodology with software. Comput. Stat. 35(1): 1-40 (2020) - [j28]Claude Renaux, Laura Buzdugan, Markus Kalisch, Peter Bühlmann:
Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software. Comput. Stat. 35(1): 59-67 (2020) - 2019
- [j27]Niklas Pfister, Sebastian Weichwald, Peter Bühlmann, Bernhard Schölkopf:
Robustifying Independent Component Analysis by Adjusting for Group-Wise Stationary Noise. J. Mach. Learn. Res. 20: 147:1-147:50 (2019) - 2016
- [j26]Laura Buzdugan, Markus Kalisch, Arcadi Navarro, Daniel Schunk, Ernst Fehr, Peter Bühlmann:
Assessing statistical significance in multivariable genome wide association analysis. Bioinform. 32(13): 1990-2000 (2016) - [j25]Peter Bühlmann, Nicolai Meinshausen:
Magging: Maximin Aggregation for Inhomogeneous Large-Scale Data. Proc. IEEE 104(1): 126-135 (2016) - 2015
- [j24]Jonas Peters, Peter Bühlmann:
Structural Intervention Distance for Evaluating Causal Graphs. Neural Comput. 27(3): 771-799 (2015) - 2014
- [j23]Peter Bühlmann, Jacopo Mandozzi:
High-dimensional variable screening and bias in subsequent inference, with an empirical comparison. Comput. Stat. 29(3): 407-430 (2014) - [j22]Shaowei Lin, Caroline Uhler, Bernd Sturmfels, Peter Bühlmann:
Hypersurfaces and Their Singularities in Partial Correlation Testing. Found. Comput. Math. 14(5): 1079-1116 (2014) - [j21]Alain Hauser, Peter Bühlmann:
Two optimal strategies for active learning of causal models from interventional data. Int. J. Approx. Reason. 55(4): 926-939 (2014) - [j20]Nicolas Städler, Daniel J. Stekhoven, Peter Bühlmann:
Pattern alternating maximization algorithm for missing data in high-dimensional problems. J. Mach. Learn. Res. 15(1): 1903-1928 (2014) - [j19]Po-Ling Loh, Peter Bühlmann:
High-dimensional learning of linear causal networks via inverse covariance estimation. J. Mach. Learn. Res. 15(1): 3065-3105 (2014) - 2013
- [j18]Bernd Fellinghauer, Peter Bühlmann, Martin Ryffel, Michael von Rhein, Jan D. Reinhardt:
Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables. Comput. Stat. Data Anal. 64: 132-152 (2013) - [j17]Peter Bühlmann:
Causal statistical inference in high dimensions. Math. Methods Oper. Res. 77(3): 357-370 (2013) - 2012
- [j16]Daniel J. Stekhoven, Peter Bühlmann:
MissForest - non-parametric missing value imputation for mixed-type data. Bioinform. 28(1): 112-118 (2012) - [j15]Daniel J. Stekhoven, Izabel Moraes, Gardar Sveinbjörnsson, Lars Hennig, Marloes H. Maathuis, Peter Bühlmann:
Causal stability ranking. Bioinform. 28(21): 2819-2823 (2012) - [j14]Alain Hauser, Peter Bühlmann:
Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 13: 2409-2464 (2012) - [j13]Nicolas Städler, Peter Bühlmann:
Missing values: sparse inverse covariance estimation and an extension to sparse regression. Stat. Comput. 22(1): 219-235 (2012) - 2011
- [j12]Shuheng Zhou, Philipp Rütimann, Min Xu, Peter Bühlmann:
High-dimensional Covariance Estimation Based On Gaussian Graphical Models. J. Mach. Learn. Res. 12: 2975-3026 (2011) - 2010
- [j11]Torsten Hothorn, Peter Bühlmann, Thomas Kneib, Matthias Schmid, Benjamin Hofner:
Model-based Boosting 2.0. J. Mach. Learn. Res. 11: 2109-2113 (2010) - [j10]Peter Bühlmann, Torsten Hothorn:
Twin Boosting: improved feature selection and prediction. Stat. Comput. 20(2): 119-138 (2010) - 2008
- [j9]Daniel Schöner, Markus Kalisch, Christian Leisner, Lukas Meier, Marc Sohrmann, Mahamadou Faty, Yves Barral, Matthias Peter, Wilhelm Gruissem, Peter Bühlmann:
Annotating novel genes by integrating synthetic lethals and genomic information. BMC Syst. Biol. 2: 3 (2008) - [j8]Roman Werner Lutz, Markus Kalisch, Peter Bühlmann:
Robustified L2 boosting. Comput. Stat. Data Anal. 52(7): 3331-3341 (2008) - 2007
- [j7]Jelle J. Goeman, Peter Bühlmann:
Analyzing gene expression data in terms of gene sets: methodological issues. Bioinform. 23(8): 980-987 (2007) - [j6]Corinne Dahinden, Giovanni Parmigiani, Mark C. Emerick, Peter Bühlmann:
Penalized likelihood for sparse contingency tables with an application to full-length cDNA libraries. BMC Bioinform. 8 (2007) - [j5]Markus Kalisch, Peter Bühlmann:
Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm. J. Mach. Learn. Res. 8: 613-636 (2007) - 2006
- [j4]Amela Prelic, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann, Wilhelm Gruissem, Lars Hennig, Lothar Thiele, Eckart Zitzler:
A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinform. 22(9): 1122-1129 (2006) - [j3]Torsten Hothorn, Peter Bühlmann:
Model-based boosting in high dimensions. Bioinform. 22(22): 2828-2829 (2006) - [j2]Peter Bühlmann, Bin Yu:
Sparse Boosting. J. Mach. Learn. Res. 7: 1001-1024 (2006) - 2003
- [j1]Marcel Dettling, Peter Bühlmann:
Boosting for Tumor Classification with Gene Expression Data. Bioinform. 19(9): 1061-1069 (2003)
Conference and Workshop Papers
- 2023
- [c4]Alexander Immer, Christoph Schultheiss, Julia E. Vogt, Bernhard Schölkopf, Peter Bühlmann, Alexander Marx:
On the Identifiability and Estimation of Causal Location-Scale Noise Models. ICML 2023: 14316-14332 - 2020
- [c3]Adrian Egli, Manuel Battegay, Andrea C. Büchler, Peter Bühlmann, Thierry Calandra, Philippe Eckert, Hansjakob Furrer, Gilbert Greub, Stephan M. Jakob, Laurent Kaiser, Stephen L. Leib, Stephan Marsch, Nicolai Meinshausen, Jean-Luc Pagani, Jerome Pugin, Gunnar Rätsch, Jacques Schrenzel, Reto Schüpbach, Martin Siegemund, Nicola Zamboni, Reinhard Zbinden, Annelies Zinkernagel, Karsten M. Borgwardt:
SPHN/PHRT: Forming a Swiss-Wide Infrastructure for Data-Driven Sepsis Research. MIE 2020: 1163-1167 - 2011
- [c2]Alain Hauser, Peter Bühlmann:
Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs (Abstract). UAI 2011: 851 - 2005
- [c1]Peter Bühlmann:
Boosting and l1-Penalty Methods for High-dimensional Data with Some Applications in Genomics. GfKl 2005: 1-12
Editorship
- 2016
- [e1]Peter Bühlmann, Petros Drineas, Michael J. Kane, Mark J. van der Laan:
Handbook of Big Data. Chapman and Hall/CRC 2016, ISBN 978-1-4822-4907-1 [contents]
Informal and Other Publications
- 2024
- [i17]Juan L. Gamella, Jonas Peters, Peter Bühlmann:
The Causal Chambers: Real Physical Systems as a Testbed for AI Methodology. CoRR abs/2404.11341 (2024) - [i16]Yihong Gu, Cong Fang, Peter Bühlmann, Jianqing Fan:
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning. CoRR abs/2405.04715 (2024) - 2023
- [i15]Michael J. Zellinger, Peter Bühlmann:
repliclust: Synthetic Data for Cluster Analysis. CoRR abs/2303.14301 (2023) - [i14]Xinwei Shen, Peter Bühlmann, Armeen Taeb:
Causality-oriented robustness: exploiting general additive interventions. CoRR abs/2307.10299 (2023) - [i13]Zhenyu Wang, Peter Bühlmann, Zijian Guo:
Distributionally Robust Machine Learning with Multi-source Data. CoRR abs/2309.02211 (2023) - [i12]Alexander Henzi, Xinwei Shen, Michael Law, Peter Bühlmann:
Invariant Probabilistic Prediction. CoRR abs/2309.10083 (2023) - 2022
- [i11]Alexander Immer, Christoph Schultheiss, Julia E. Vogt, Bernhard Schölkopf, Peter Bühlmann, Alexander Marx:
On the Identifiability and Estimation of Causal Location-Scale Noise Models. CoRR abs/2210.09054 (2022) - 2021
- [i10]Michael Moor, Nicolas Bennett, Drago Plecko, Max Horn, Bastian Rieck, Nicolai Meinshausen, Peter Bühlmann, Karsten M. Borgwardt:
Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning. CoRR abs/2107.05230 (2021) - [i9]Martin Emil Jakobsen, Rajen Dinesh Shah, Peter Bühlmann, Jonas Peters:
Structure Learning for Directed Trees. CoRR abs/2108.08871 (2021) - 2020
- [i8]Domagoj Cevid, Loris Michel, Nicolai Meinshausen, Peter Bühlmann:
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression. CoRR abs/2005.14458 (2020) - [i7]Solt Kovács, Housen Li, Lorenz Haubner, Axel Munk, Peter Bühlmann:
Optimistic search strategy: Change point detection for large-scale data via adaptive logarithmic queries. CoRR abs/2010.10194 (2020) - [i6]Yuansi Chen, Peter Bühlmann:
Domain adaptation under structural causal models. CoRR abs/2010.15764 (2020) - 2019
- [i5]Malte Londschien, Solt Kovács, Peter Bühlmann:
Change point detection for graphical models in presence of missing values. CoRR abs/1907.05409 (2019) - 2018
- [i4]Niklas Pfister, Sebastian Weichwald, Peter Bühlmann, Bernhard Schölkopf:
groupICA: Independent component analysis for grouped data. CoRR abs/1806.01094 (2018) - 2013
- [i3]Peter Bühlmann, Jonas Peters, Jan Ernest:
CAM: Causal Additive Models, high-dimensional order search and penalized regression. CoRR abs/1310.1533 (2013) - 2012
- [i2]Alain Hauser, Peter Bühlmann:
Two Optimal Strategies for Active Learning of Causal Models from Interventions. CoRR abs/1205.4174 (2012) - 2011
- [i1]Alain Hauser, Peter Bühlmann:
Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs. CoRR abs/1104.2808 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:16 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint