default search action
Carola Doerr
Carola Winzen
Person information
- affiliation: Sorbonne Université, CNRS, LIP6, Paris, France
- affiliation (former): Max Planck Institute for Informatics, Saarbrücken, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j45]Carola Doerr, Duri Andrea Janett, Johannes Lengler:
Tight Runtime Bounds for Static Unary Unbiased Evolutionary Algorithms on Linear Functions. Algorithmica 86(10): 3115-3152 (2024) - [j44]Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics. Evol. Comput. 32(3): 205-210 (2024) - [j43]François Clément, Carola Doerr, Luís Paquete:
Heuristic approaches to obtain low-discrepancy point sets via subset selection. J. Complex. 83: 101852 (2024) - [j42]Maria Laura Santoni, Elena Raponi, Renato De Leone, Carola Doerr:
Comparison of High-Dimensional Bayesian Optimization Algorithms on BBOB. ACM Trans. Evol. Learn. Optim. 4(3): 17:1-17:33 (2024) - [c133]Ana Nikolikj, Ana Kostovska, Gjorgjina Cenikj, Carola Doerr, Tome Eftimov:
Generalization Ability of Feature-Based Performance Prediction Models: A Statistical Analysis Across Benchmarks. CEC 2024: 1-8 - [c132]Ana Nikolikj, Ana Kostovska, Diederick Vermetten, Carola Doerr, Tome Eftimov:
Quantifying Individual and Joint Module Impact in Modular Optimization Frameworks. CEC 2024: 1-8 - [c131]Konstantin Dietrich, Diederick Vermetten, Carola Doerr, Pascal Kerschke:
Impact of Training Instance Selection on Automated Algorithm Selection Models for Numerical Black-box Optimization. GECCO 2024 - [c130]Carola Doerr, Diederick Vermetten, Jacob de Nobel, Thomas Bäck:
Benchmarking and Analyzing Iterative Optimization Heuristics with IOHprofiler. GECCO Companion 2024: 791-799 - [c129]Diederick Vermetten, Carola Doerr, Hao Wang, Anna V. Kononova, Thomas Bäck:
Large-Scale Benchmarking of Metaphor-Based Optimization Heuristics. GECCO 2024 - [c128]Diederick Vermetten, Johannes Lengler, Dimitri Rusin, Thomas Bäck, Carola Doerr:
Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler. PPSN (2) 2024: 20-35 - [c127]Moritz Seiler, Urban Skvorc, Gjorgjina Cenikj, Carola Doerr, Heike Trautmann:
Learned Features vs. Classical ELA on Affine BBOB Functions. PPSN (2) 2024: 137-153 - [c126]Konstantin Dietrich, Raphael Patrick Prager, Carola Doerr, Heike Trautmann:
Hybridizing Target- and SHAP-Encoded Features for Algorithm Selection in Mixed-Variable Black-Box Optimization. PPSN (2) 2024: 154-169 - [d20]Konstantin Dietrich, Diederick Vermetten, Carola Doerr, Pascal Kerschke:
Impact of Training Instance Selection on Automated Algorithm Selection Models for Numerical Black-box Optimization - Reproducibility Files. Zenodo, 2024 - [d19]Diederick Vermetten, Carola Doerr, Hao Wang, Anna V. Kononova, Thomas Bäck:
Large-Scale Benchmarking of Metaphor-Based Optimization Heuristics - Reproducibility Files. Zenodo, 2024 - [d18]Diederick Vermetten, Johannes Lengler, Dimitri Rusin, Thomas Bäck, Carola Doerr:
Benchmarking Dynamic Binary Value Problems with IOHprofiler - Reproducibility files. Zenodo, 2024 - [d17]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB - Reproducibility and Additional Data. Version 2. Zenodo, 2024 [all versions] - [i125]Diederick Vermetten, Carola Doerr, Hao Wang, Anna V. Kononova, Thomas Bäck:
Large-scale Benchmarking of Metaphor-based Optimization Heuristics. CoRR abs/2402.09800 (2024) - [i124]Manuel López-Ibáñez, Diederick Vermetten, Johann Dréo, Carola Doerr:
Using the Empirical Attainment Function for Analyzing Single-objective Black-box Optimization Algorithms. CoRR abs/2404.02031 (2024) - [i123]Konstantin Dietrich, Diederick Vermetten, Carola Doerr, Pascal Kerschke:
Impact of Training Instance Selection on Automated Algorithm Selection Models for Numerical Black-box Optimization. CoRR abs/2404.07539 (2024) - [i122]Diederick Vermetten, Johannes Lengler, Dimitri Rusin, Thomas Bäck, Carola Doerr:
Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler. CoRR abs/2404.15837 (2024) - [i121]Ana Nikolikj, Ana Kostovska, Diederick Vermetten, Carola Doerr, Tome Eftimov:
Quantifying Individual and Joint Module Impact in Modular Optimization Frameworks. CoRR abs/2405.11964 (2024) - [i120]Ana Nikolikj, Ana Kostovska, Gjorgjina Cenikj, Carola Doerr, Tome Eftimov:
Generalization Ability of Feature-based Performance Prediction Models: A Statistical Analysis across Benchmarks. CoRR abs/2405.12259 (2024) - [i119]Gjorgjina Cenikj, Ana Nikolikj, Gasper Petelin, Niki van Stein, Carola Doerr, Tome Eftimov:
A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization. CoRR abs/2406.06629 (2024) - [i118]Konstantin Dietrich, Raphael Patrick Prager, Carola Doerr, Heike Trautmann:
Hybridizing Target- and SHAP-encoded Features for Algorithm Selection in Mixed-variable Black-box Optimization. CoRR abs/2407.07439 (2024) - [i117]François Clément, Carola Doerr, Kathrin Klamroth, Luís Paquete:
Transforming the Challenge of Constructing Low-Discrepancy Point Sets into a Permutation Selection Problem. CoRR abs/2407.11533 (2024) - [i116]Maria Laura Santoni, Elena Raponi, Aneta Neumann, Frank Neumann, Mike Preuss, Carola Doerr:
Illuminating the Diversity-Fitness Trade-Off in Black-Box Optimization. CoRR abs/2408.16393 (2024) - 2023
- [j41]Carola Doerr, Martin S. Krejca:
Run Time Analysis for Random Local Search on Generalized Majority Functions. IEEE Trans. Evol. Comput. 27(5): 1385-1397 (2023) - [j40]Ana Kostovska, Diederick Vermetten, Carola Doerr, Saso Dzeroski, Pance Panov, Tome Eftimov:
OPTION: OPTImization Algorithm Benchmarking ONtology. IEEE Trans. Evol. Comput. 27(6): 1618-1632 (2023) - [c125]Carolin Benjamins, Elena Raponi, Anja Jankovic, Carola Doerr, Marius Lindauer:
Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. AutoML 2023: 6/1-50 - [c124]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB: Many-Affine Combinations of BBOB Functions for Evaluating AutoML Approaches in Noiseless Numerical Black-Box Optimization Contexts. AutoML 2023: 7/1-14 - [c123]Ana Kostovska, Gjorgjina Cenikj, Diederick Vermetten, Anja Jankovic, Ana Nikolikj, Urban Skvorc, Peter Korosec, Carola Doerr, Tome Eftimov:
PS-AAS: Portfolio Selection for Automated Algorithm Selection in Black-Box Optimization. AutoML 2023: 11/1-17 - [c122]Ana Nikolikj, Michal Pluhacek, Carola Doerr, Peter Korosec, Tome Eftimov:
Sensitivity Analysis of RF+clust for Leave-One-Problem-Out Performance Prediction. CEC 2023: 1-8 - [c121]Ana Kostovska, Diederick Vermetten, Saso Dzeroski, Pance Panov, Tome Eftimov, Carola Doerr:
Using Knowledge Graphs for Performance Prediction of Modular Optimization Algorithms. EvoApplications@EvoStar 2023: 253-268 - [c120]Ana Nikolikj, Carola Doerr, Tome Eftimov:
RF+clust for Leave-One-Problem-Out Performance Prediction. EvoApplications@EvoStar 2023: 285-301 - [c119]Carola Doerr:
Bridging Theory and Practice in Evolutionary Computation? FOGA 2023: 2 - [c118]Deyao Chen, Maxim Buzdalov, Carola Doerr, Nguyen Dang:
Using Automated Algorithm Configuration for Parameter Control. FOGA 2023: 38-49 - [c117]Ana Nikolikj, Gjorgjina Cenikj, Gordana Ispirova, Diederick Vermetten, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korosec, Tome Eftimov:
Assessing the Generalizability of a Performance Predictive Model. GECCO Companion 2023: 311-314 - [c116]Carolin Benjamins, Elena Raponi, Anja Jankovic, Carola Doerr, Marius Lindauer:
Towards Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. GECCO Companion 2023: 483-486 - [c115]Ana Kostovska, Anja Jankovic, Diederick Vermetten, Saso Dzeroski, Tome Eftimov, Carola Doerr:
Comparing Algorithm Selection Approaches on Black-Box Optimization Problems. GECCO Companion 2023: 495-498 - [c114]Ana Nikolikj, Saso Dzeroski, Mario Andrés Muñoz, Carola Doerr, Peter Korosec, Tome Eftimov:
Algorithm Instance Footprint: Separating Easily Solvable and Challenging Problem Instances. GECCO 2023: 529-537 - [c113]Gjorgjina Cenikj, Gasper Petelin, Carola Doerr, Peter Korosec, Tome Eftimov:
DynamoRep: Trajectory-Based Population Dynamics for Classification of Black-box Optimization Problems. GECCO 2023: 813-821 - [c112]Diederick Vermetten, Furong Ye, Carola Doerr:
Using Affine Combinations of BBOB Problems for Performance Assessment. GECCO 2023: 873-881 - [c111]Carola Doerr, Hao Wang, Diederick Vermetten, Thomas Bäck, Jacob de Nobel, Furong Ye:
Benchmarking and analyzing iterative optimization heuristics with IOHprofiler. GECCO Companion 2023: 938-945 - [c110]François Clément, Diederick Vermetten, Jacob de Nobel, Alexandre D. Jesus, Luís Paquete, Carola Doerr:
Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms. GECCO 2023: 1330-1338 - [c109]Carola Doerr, Duri Andrea Janett, Johannes Lengler:
Tight Runtime Bounds for Static Unary Unbiased Evolutionary Algorithms on Linear Functions. GECCO 2023: 1565-1574 - [c108]Maria Laura Santoni, Elena Raponi, Renato De Leone, Carola Doerr:
Comparison of Bayesian Optimization Algorithms for BBOB Problems in Dimensions 10 and 60. GECCO Companion 2023: 2390-2393 - [c107]Carola Doerr:
Benchmarking Iterative Optimization Heuristics with IOHprofiler (invited paper). ITAT 2023: 1 - [d16]François Clément, Diederick Vermetten, Jacob de Nobel, Alexandre D. Jesus, Luís Paquete, Carola Doerr:
Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms - Code and Data. Zenodo, 2023 - [d15]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB - Reproducibility and Additional Data. Version 1. Zenodo, 2023 [all versions] - [d14]Diederick Vermetten, Furong Ye, Carola Doerr:
Using Affine Combinations of BBOB Problems for Performance Assessment - Code and Data. Zenodo, 2023 - [i115]Ana Nikolikj, Carola Doerr, Tome Eftimov:
RF+clust for Leave-One-Problem-Out Performance Prediction. CoRR abs/2301.09524 (2023) - [i114]Ana Kostovska, Diederick Vermetten, Saso Dzeroski, Pance Panov, Tome Eftimov, Carola Doerr:
Using Knowledge Graphs for Performance Prediction of Modular Optimization Algorithms. CoRR abs/2301.09876 (2023) - [i113]Deyao Chen, Maxim Buzdalov, Carola Doerr, Nguyen Dang:
Using Automated Algorithm Configuration for Parameter Control. CoRR abs/2302.12334 (2023) - [i112]Carola Doerr, Duri Andrea Janett, Johannes Lengler:
Tight Runtime Bounds for Static Unary Unbiased Evolutionary Algorithms on Linear Functions. CoRR abs/2302.12338 (2023) - [i111]Maria Laura Santoni, Elena Raponi, Renato De Leone, Carola Doerr:
Comparison of High-Dimensional Bayesian Optimization Algorithms on BBOB. CoRR abs/2303.00890 (2023) - [i110]Diederick Vermetten, Furong Ye, Carola Doerr:
Using Affine Combinations of BBOB Problems for Performance Assessment. CoRR abs/2303.04573 (2023) - [i109]Ana Nikolikj, Michal Pluhacek, Carola Doerr, Peter Korosec, Tome Eftimov:
Sensitivity Analysis of RF+clust for Leave-one-problem-out Performance Prediction. CoRR abs/2305.19375 (2023) - [i108]Ana Nikolikj, Gjorgjina Cenikj, Gordana Ispirova, Diederick Vermetten, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korosec, Tome Eftimov:
Assessing the Generalizability of a Performance Predictive Model. CoRR abs/2306.00040 (2023) - [i107]Ana Nikolikj, Saso Dzeroski, Mario Andrés Muñoz, Carola Doerr, Peter Korosec, Tome Eftimov:
Algorithm Instance Footprint: Separating Easily Solvable and Challenging Problem Instances. CoRR abs/2306.00479 (2023) - [i106]Carolin Benjamins, Elena Raponi, Anja Jankovic, Carola Doerr, Marius Lindauer:
Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. CoRR abs/2306.04262 (2023) - [i105]Gjorgjina Cenikj, Gasper Petelin, Carola Doerr, Peter Korosec, Tome Eftimov:
DynamoRep: Trajectory-Based Population Dynamics for Classification of Black-box Optimization Problems. CoRR abs/2306.05438 (2023) - [i104]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB: Many-Affine Combinations of BBOB Functions for Evaluating AutoML Approaches in Noiseless Numerical Black-Box Optimization Contexts. CoRR abs/2306.10627 (2023) - [i103]François Clément, Carola Doerr, Luís Paquete:
Heuristic Approaches to Obtain Low-Discrepancy Point Sets via Subset Selection. CoRR abs/2306.15276 (2023) - [i102]François Clément, Diederick Vermetten, Jacob de Nobel, Alexandre D. Jesus, Luís Paquete, Carola Doerr:
Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms. CoRR abs/2306.16998 (2023) - [i101]Ana Kostovska, Anja Jankovic, Diederick Vermetten, Saso Dzeroski, Tome Eftimov, Carola Doerr:
Comparing Algorithm Selection Approaches on Black-Box Optimization Problems. CoRR abs/2306.17585 (2023) - [i100]Elena Raponi, Nathanaël Carraz Rakotonirina, Jérémy Rapin, Carola Doerr, Olivier Teytaud:
Optimizing with Low Budgets: a Comparison on the Black-box Optimization Benchmarking Suite and OpenAI Gym. CoRR abs/2310.00077 (2023) - [i99]Ana Kostovska, Gjorgjina Cenikj, Diederick Vermetten, Anja Jankovic, Ana Nikolikj, Urban Skvorc, Peter Korosec, Carola Doerr, Tome Eftimov:
PS-AAS: Portfolio Selection for Automated Algorithm Selection in Black-Box Optimization. CoRR abs/2310.10685 (2023) - [i98]François Clément, Carola Doerr, Kathrin Klamroth, Luís Paquete:
Constructing Optimal L∞ Star Discrepancy Sets. CoRR abs/2311.17463 (2023) - [i97]Diederick Vermetten, Furong Ye, Thomas Bäck, Carola Doerr:
MA-BBOB: A Problem Generator for Black-Box Optimization Using Affine Combinations and Shifts. CoRR abs/2312.11083 (2023) - 2022
- [j39]Maxim Buzdalov, Benjamin Doerr, Carola Doerr, Dmitry Vinokurov:
Fixed-Target Runtime Analysis. Algorithmica 84(6): 1762-1793 (2022) - [j38]François Clément, Carola Doerr, Luís Paquete:
Star discrepancy subset selection: Problem formulation and efficient approaches for low dimensions. J. Complex. 70: 101645 (2022) - [j37]Laurent Meunier, Herilalaina Rakotoarison, Pak-Kan Wong, Baptiste Rozière, Jérémy Rapin, Olivier Teytaud, Antoine Moreau, Carola Doerr:
Black-Box Optimization Revisited: Improving Algorithm Selection Wizards Through Massive Benchmarking. IEEE Trans. Evol. Comput. 26(3): 490-500 (2022) - [j36]Thomas Bäck, Carola Doerr, Bernhard Sendhoff, Thomas Stützle:
Guest Editorial Special Issue on Benchmarking Sampling-Based Optimization Heuristics: Methodology and Software. IEEE Trans. Evol. Comput. 26(6): 1202-1205 (2022) - [j35]Furong Ye, Carola Doerr, Hao Wang, Thomas Bäck:
Automated Configuration of Genetic Algorithms by Tuning for Anytime Performance. IEEE Trans. Evol. Comput. 26(6): 1526-1538 (2022) - [j34]Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck:
IOHanalyzer: Detailed Performance Analyses for Iterative Optimization Heuristics. ACM Trans. Evol. Learn. Optim. 2(1): 3:1-3:29 (2022) - [c106]Nina Bulanova, Arina Buzdalova, Carola Doerr:
Fast Re-Optimization of LeadingOnes with Frequent Changes. CEC 2022: 1-8 - [c105]Anja Jankovic, Diederick Vermetten, Ana Kostovska, Jacob de Nobel, Tome Eftimov, Carola Doerr:
Trajectory-based Algorithm Selection with Warm-starting. CEC 2022: 1-8 - [c104]Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, Thomas Bäck:
IOHanalyzer: Detailed performance analyses for iterative optimization heuristics: hot-off-the-press track @ GECCO 2022. GECCO Companion 2022: 49-50 - [c103]Furong Ye, Carola Doerr, Hao Wang, Thomas Bäck:
Automated configuration of genetic algorithms by tuning for anytime performance: hot-off-the-press track at GECCCO 2022. GECCO Companion 2022: 51-52 - [c102]Gjorgjina Cenikj, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korosec, Tome Eftimov:
SELECTOR: selecting a representative benchmark suite for reproducible statistical comparison. GECCO 2022: 620-629 - [c101]Ana Kostovska, Diederick Vermetten, Saso Dzeroski, Carola Doerr, Peter Korosec, Tome Eftimov:
The importance of landscape features for performance prediction of modular CMA-ES variants. GECCO 2022: 648-656 - [c100]André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, Carola Doerr:
Theory-inspired parameter control benchmarks for dynamic algorithm configuration. GECCO 2022: 766-775 - [c99]Diederick Vermetten, Hao Wang, Manuel López-Ibáñez, Carola Doerr, Thomas Bäck:
Analyzing the impact of undersampling on the benchmarking and configuration of evolutionary algorithms. GECCO 2022: 867-875 - [c98]Quentin Renau, Johann Dréo, Alain Peres, Yann Semet, Carola Doerr, Benjamin Doerr:
Automated algorithm selection for radar network configuration. GECCO 2022: 1263-1271 - [c97]Carola Doerr, Hao Wang, Diederick Vermetten, Thomas Bäck, Jacob de Nobel, Furong Ye:
Benchmarking and analyzing iterative optimization heuristics with IOH profiler. GECCO Companion 2022: 1334-1341 - [c96]Risto Trajanov, Ana Nikolikj, Gjorgjina Cenikj, Fabien Teytaud, Mathurin Videau, Olivier Teytaud, Tome Eftimov, Manuel López-Ibáñez, Carola Doerr:
Improving Nevergrad's Algorithm Selection Wizard NGOpt Through Automated Algorithm Configuration. PPSN (1) 2022: 18-31 - [c95]Furong Ye, Diederick Vermetten, Carola Doerr, Thomas Bäck:
Non-elitist Selection Can Improve the Performance of Irace. PPSN (1) 2022: 32-45 - [c94]Ana Kostovska, Anja Jankovic, Diederick Vermetten, Jacob de Nobel, Hao Wang, Tome Eftimov, Carola Doerr:
Per-run Algorithm Selection with Warm-Starting Using Trajectory-Based Features. PPSN (1) 2022: 46-60 - [c93]Kirill A. Antonov, Elena Raponi, Hao Wang, Carola Doerr:
High Dimensional Bayesian Optimization with Kernel Principal Component Analysis. PPSN (1) 2022: 118-131 - [c92]Ana Kostovska, Carola Doerr, Saso Dzeroski, Dragi Kocev, Pance Panov, Tome Eftimov:
Explainable Model-specific Algorithm Selection for Multi-Label Classification. SSCI 2022: 39-46 - [d13]Anja Jankovic, Ana Kostovska, Diederick Vermetten, Jacob de Nobel, Hao Wang, Tome Eftimov, Carola Doerr:
Per-Run Algorithm Selection with Warm-starting using Trajectory-based Features - Data. Zenodo, 2022 - [d12]Ana Kostovska, Diederick Vermetten, Saso Dzeroski, Carola Doerr, Peter Korosec, Tome Eftimov:
Linking Problem Landscape Features with the Performance of Individual CMA-ES Modules - Data. Zenodo, 2022 - [d11]Diederick Vermetten, Hao Wang, Manuel López-Ibáñez, Carola Doerr, Thomas Bäck:
Analyzing the Impact of Undersampling on the Benchmarkingand Configuration of Evolutionary Algorithms - Dataset. Zenodo, 2022 - [d10]Furong Ye, Diederick Vermetten, Carola Doerr, Thomas Bäck:
Data Sets for the study "Non-Elitist Selection Can Improve the Performance of Irace". Zenodo, 2022 - [i96]André Biedenkapp, Nguyen Dang, Martin S. Krejca, Frank Hutter, Carola Doerr:
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration. CoRR abs/2202.03259 (2022) - [i95]Furong Ye, Diederick L. Vermetten, Carola Doerr, Thomas Bäck:
Non-Elitist Selection among Survivor Configurations can Improve the Performance of Irace. CoRR abs/2203.09227 (2022) - [i94]Anja Jankovic, Diederick Vermetten, Ana Kostovska, Jacob de Nobel, Tome Eftimov, Carola Doerr:
Trajectory-based Algorithm Selection with Warm-starting. CoRR abs/2204.06397 (2022) - [i93]Dominik Schröder, Diederick Vermetten, Hao Wang, Carola Doerr, Thomas Bäck:
Chaining of Numerical Black-box Algorithms: Warm-Starting and Switching Points. CoRR abs/2204.06539 (2022) - [i92]Ana Kostovska, Diederick Vermetten, Saso Dzeroski, Carola Doerr, Peter Korosec, Tome Eftimov:
The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants. CoRR abs/2204.07431 (2022) - [i91]Diederick Vermetten, Hao Wang, Manuel López-Ibáñez, Carola Doerr, Thomas Bäck:
Analyzing the Impact of Undersampling on the Benchmarking and Configuration of Evolutionary Algorithms. CoRR abs/2204.09353 (2022) - [i90]Ana Kostovska, Anja Jankovic, Diederick Vermetten, Jacob de Nobel, Hao Wang, Tome Eftimov, Carola Doerr:
Per-run Algorithm Selection with Warm-starting using Trajectory-based Features. CoRR abs/2204.09483 (2022) - [i89]Gjorgjina Cenikj, Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter Korosec, Tome Eftimov:
SELECTOR: Selecting a Representative Benchmark Suite for Reproducible Statistical Comparison. CoRR abs/2204.11527 (2022) - [i88]Carola Doerr, Martin S. Krejca:
Run Time Analysis for Random Local Search on Generalized Majority Functions. CoRR abs/2204.12770 (2022) - [i87]Kirill A. Antonov, Elena Raponi, Hao Wang, Carola Doerr:
High Dimensional Bayesian Optimization with Kernel Principal Component Analysis. CoRR abs/2204.13753 (2022) - [i86]Quentin Renau, Johann Dréo, Alain Peres, Yann Semet, Carola Doerr, Benjamin Doerr:
Automated Algorithm Selection for Radar Network Configuration. CoRR abs/2205.03670 (2022) - [i85]Nina Bulanova, Arina Buzdalova, Carola Doerr:
Fast Re-Optimization of LeadingOnes with Frequent Changes. CoRR abs/2209.04391 (2022) - [i84]Risto Trajanov, Ana Nikolikj, Gjorgjina Cenikj, Fabien Teytaud, Mathurin Videau, Olivier Teytaud, Tome Eftimov, Manuel López-Ibáñez, Carola Doerr:
Improving Nevergrad's Algorithm Selection Wizard NGOpt through Automated Algorithm Configuration. CoRR abs/2209.04412 (2022) - [i83]Carolin Benjamins, Elena Raponi, Anja Jankovic, Koen van der Blom, Maria Laura Santoni, Marius Lindauer, Carola Doerr:
PI is back! Switching Acquisition Functions in Bayesian Optimization. CoRR abs/2211.01455 (2022) - [i82]