default search action
Fabio Vandin
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j30]Leonardo Pellegrina, Fabio Vandin:
Efficient Discovery of Significant Patterns with Few-Shot Resampling. Proc. VLDB Endow. 17(10): 2668-2680 (2024) - [j29]Leonardo Pellegrina, Fabio Vandin:
SILVAN: Estimating Betweenness Centralities with Progressive Sampling and Non-uniform Rademacher Bounds. ACM Trans. Knowl. Discov. Data 18(3): 52:1-52:55 (2024) - [c42]Leonardo Pellegrina, Fabio Vandin:
Scalable Rule Lists Learning with Sampling. KDD 2024: 2352-2363 - [c41]Ilie Sarpe, Fabio Vandin, Aristides Gionis:
Scalable Temporal Motif Densest Subnetwork Discovery. KDD 2024: 2536-2547 - [i20]Ilie Sarpe, Fabio Vandin, Aristides Gionis:
Scalable Temporal Motif Densest Subnetwork Discovery. CoRR abs/2406.10608 (2024) - [i19]Leonardo Pellegrina, Fabio Vandin:
Efficient Discovery of Significant Patterns with Few-Shot Resampling. CoRR abs/2406.11803 (2024) - [i18]Leonardo Pellegrina, Fabio Vandin:
Scalable Rule Lists Learning with Sampling. CoRR abs/2406.12803 (2024) - [i17]Cristian Boldrin, Fabio Vandin:
Fast and Accurate Triangle Counting in Graph Streams Using Predictions. CoRR abs/2409.15205 (2024) - 2023
- [j28]Andrea Tonon, Fabio Vandin:
caSPiTa: mining statistically significant paths in time series data from an unknown network. Knowl. Inf. Syst. 65(6): 2347-2374 (2023) - [c40]Paolo Pellizzoni, Fabio Vandin:
VC-dimension and Rademacher Averages of Subgraphs, with Applications to Graph Mining. ICDE 2023: 2470-2482 - [c39]Dario Simionato, Fabio Vandin:
Bounding the Family-Wise Error Rate in Local Causal Discovery Using Rademacher Averages (Extended Abstract). IJCAI 2023: 6492-6497 - 2022
- [j27]Diego Santoro, Leonardo Pellegrina, Matteo Comin, Fabio Vandin:
SPRISS: approximating frequent k-mers by sampling reads, and applications. Bioinform. 38(13): 3343-3350 (2022) - [j26]Fabio Vandin:
Technical perspective: Evaluating sampled metrics is challenging. Commun. ACM 65(7): 74 (2022) - [j25]Davide Buffelli, Fabio Vandin:
The Impact of Global Structural Information in Graph Neural Networks Applications. Data 7(1): 10 (2022) - [j24]Andrea Tonon, Fabio Vandin:
gRosSo: mining statistically robust patterns from a sequence of datasets. Knowl. Inf. Syst. 64(9): 2329-2359 (2022) - [j23]Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato:
MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining. ACM Trans. Knowl. Discov. Data 16(6): 124:1-124:29 (2022) - [c38]Davide Buffelli, Fabio Vandin:
Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach. IJCNN 2022: 1-8 - [c37]Davide Buffelli, Pietro Lió, Fabio Vandin:
SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks. NeurIPS 2022 - [c36]Dario Simionato, Fabio Vandin:
Bounding the Family-Wise Error Rate in Local Causal Discovery Using Rademacher Averages. ECML/PKDD (5) 2022: 255-271 - [i16]Davide Buffelli, Fabio Vandin:
Graph Representation Learning for Multi-Task Settings: a Meta-Learning Approach. CoRR abs/2201.03326 (2022) - [i15]Davide Buffelli, Pietro Liò, Fabio Vandin:
SizeShiftReg: a Regularization Method for Improving Size-Generalization in Graph Neural Networks. CoRR abs/2207.07888 (2022) - 2021
- [j22]Matteo Comin, Barbara Di Camillo, Cinzia Pizzi, Fabio Vandin:
Comparison of microbiome samples: methods and computational challenges. Briefings Bioinform. 22(1): 88-95 (2021) - [c35]Ilie Sarpe, Fabio Vandin:
odeN: Simultaneous Approximation of Multiple Motif Counts in Large Temporal Networks. CIKM 2021: 1568-1577 - [c34]Andrea Tonon, Fabio Vandin:
CASPITA: Mining Statistically Significant Paths in Time Series Data from an Unknown Network. ICDM 2021: 639-648 - [c33]Ilie Sarpe, Fabio Vandin:
PRESTO: Simple and Scalable Sampling Techniques for the Rigorous Approximation of Temporal Motif Counts. SDM 2021: 145-153 - [c32]Federico Altieri, Andrea Pietracaprina, Geppino Pucci, Fabio Vandin:
Scalable Distributed Approximation of Internal Measures for Clustering Evaluation. SDM 2021: 648-656 - [i14]Ilie Sarpe, Fabio Vandin:
PRESTO: Simple and Scalable Sampling Techniques for the Rigorous Approximation of Temporal Motif Counts. CoRR abs/2101.07152 (2021) - [i13]Leonardo Pellegrina, Fabio Vandin:
SILVAN: Estimating Betweenness Centralities with Progressive Sampling and Non-uniform Rademacher Bounds. CoRR abs/2106.03462 (2021) - [i12]Ilie Sarpe, Fabio Vandin:
odeN: Simultaneous Approximation of Multiple Motif Counts in Large Temporal Networks. CoRR abs/2108.08734 (2021) - 2020
- [j21]Diego Santoro, Andrea Tonon, Fabio Vandin:
Mining Sequential Patterns with VC-Dimension and Rademacher Complexity. Algorithms 13(5): 123 (2020) - [j20]Leonardo Pellegrina, Fabio Vandin:
Efficient mining of the most significant patterns with permutation testing. Data Min. Knowl. Discov. 34(4): 1201-1234 (2020) - [j19]Leonardo Pellegrina, Cinzia Pizzi, Fabio Vandin:
Fast Approximation of Frequent k-Mers and Applications to Metagenomics. J. Comput. Biol. 27(4): 534-549 (2020) - [j18]Matteo Riondato, Fabio Vandin:
MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension. ACM Trans. Knowl. Discov. Data 14(5): 56:1-56:31 (2020) - [c31]Andrea Tonon, Fabio Vandin:
GRosSo: Mining Statistically Robust Patterns from a Sequence of Datasets. ICDM 2020: 551-560 - [c30]Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato:
MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining. KDD 2020: 2165-2174 - [i11]Federico Altieri, Andrea Pietracaprina, Geppino Pucci, Fabio Vandin:
Scalable Distributed Approximation of Internal Measures for Clustering Evaluation. CoRR abs/2003.01430 (2020) - [i10]Davide Buffelli, Fabio Vandin:
Are Graph Convolutional Networks Fully Exploiting Graph Structure? CoRR abs/2006.03814 (2020) - [i9]Davide Buffelli, Fabio Vandin:
Attention-Based Deep Learning Framework for Human Activity Recognition with User Adaptation. CoRR abs/2006.03820 (2020) - [i8]Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, Matteo Riondato:
MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining. CoRR abs/2006.09085 (2020) - [i7]Davide Buffelli, Fabio Vandin:
A Meta-Learning Approach for Graph Representation Learning in Multi-Task Settings. CoRR abs/2012.06755 (2020)
2010 – 2019
- 2019
- [j17]Morteza Chalabi Hajkarim, Eli Upfal, Fabio Vandin:
Differentially mutated subnetworks discovery. Algorithms Mol. Biol. 14(1): 10:1-10:11 (2019) - [j16]Morteza Chalabi Hajkarim, Vasileios Tsiamis, Lukas Käll, Fabio Vandin, Veit Schwämmle:
CoExpresso: assess the quantitative behavior of protein complexes in human cells. BMC Bioinform. 20(1): 17 (2019) - [j15]Rebecca Sarto Basso, Dorit S. Hochbaum, Fabio Vandin:
Efficient algorithms to discover alterations with complementary functional association in cancer. PLoS Comput. Biol. 15(5) (2019) - [c29]Andrea Tonon, Fabio Vandin:
Permutation Strategies for Mining Significant Sequential Patterns. ICDM 2019: 1330-1335 - [c28]Leonardo Pellegrina, Matteo Riondato, Fabio Vandin:
SPuManTE: Significant Pattern Mining with Unconditional Testing. KDD 2019: 1528-1538 - [c27]Leonardo Pellegrina, Matteo Riondato, Fabio Vandin:
Hypothesis Testing and Statistically-sound Pattern Mining. KDD 2019: 3215-3216 - [c26]Leonardo Pellegrina, Cinzia Pizzi, Fabio Vandin:
Fast Approximation of Frequent k-mers and Applications to Metagenomics. RECOMB 2019: 208-226 - 2018
- [c25]Leonardo Pellegrina, Fabio Vandin:
Efficient Mining of the Most Significant Patterns with Permutation Testing. KDD 2018: 2070-2079 - [c24]Matteo Riondato, Fabio Vandin:
MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimension. KDD 2018: 2130-2139 - [c23]Rebecca Sarto Basso, Dorit S. Hochbaum, Fabio Vandin:
Efficient Algorithms to Discover Alterations with Complementary Functional Association in Cancer. RECOMB 2018: 278-279 - [c22]Morteza Chalabi Hajkarim, Eli Upfal, Fabio Vandin:
Differentially Mutated Subnetworks Discovery. WABI 2018: 18:1-18:14 - 2017
- [j14]Diogo Almeida, Ida Skov, Artur Silva, Fabio Vandin, Qihua Tan, Richard Röttger, Jan Baumbach:
Efficient detection of differentially methylated regions using DiMmeR. Bioinform. 33(4): 549-551 (2017) - [j13]Matteo Ceccarello, Carlo Fantozzi, Andrea Pietracaprina, Geppino Pucci, Fabio Vandin:
Clustering Uncertain Graphs. Proc. VLDB Endow. 11(4): 472-484 (2017) - 2016
- [j12]Fabio Vandin, Benjamin J. Raphael, Eli Upfal:
On the Sample Complexity of Cancer Pathways Identification. J. Comput. Biol. 23(1): 30-41 (2016) - [j11]Diogo Almeida, Ida Skov, Jesper Lund, Afsaneh Mohammadnejad, Artur Silva, Fabio Vandin, Qihua Tan, Jan Baumbach, Richard Röttger:
Jllumina - A comprehensive Java-based API for statistical Illumina Infinium HumanMethylation450 and MethylationEPIC data processing. J. Integr. Bioinform. 13(4) (2016) - [c21]Lorenzo De Stefani, Alessandro Epasto, Eli Upfal, Fabio Vandin:
Reconstructing Hidden Permutations Using the Average-Precision (AP) Correlation Statistic. AAAI 2016: 1526-1532 - [c20]Farhad Hormozdiari, Fereydoun Hormozdiari, Carl Kingsford, Paul Medvedev, Fabio Vandin:
The Second Decade of the International Conference on Research in Computational Molecular Biology (RECOMB). RECOMB 2016: 3-16 - [c19]Tommy Hansen, Fabio Vandin:
Finding Mutated Subnetworks Associated with Survival in Cancer. RECOMB 2016: 250 - [c18]Anna Bomersbach, Marco Chiarandini, Fabio Vandin:
An Efficient Branch and Cut Algorithm to Find Frequently Mutated Subnetworks in Cancer. WABI 2016: 27-39 - [i6]Matteo Ceccarello, Carlo Fantozzi, Andrea Pietracaprina, Geppino Pucci, Fabio Vandin:
Clustering Uncertain Graphs. CoRR abs/1612.06675 (2016) - 2015
- [j10]Benjamin J. Raphael, Fabio Vandin:
Simultaneous Inference of Cancer Pathways and Tumor Progression from Cross-Sectional Mutation Data. J. Comput. Biol. 22(6): 510-527 (2015) - [j9]Andrea Pietracaprina, Geppino Pucci, Francesco Silvestri, Fabio Vandin:
Space-efficient parallel algorithms for combinatorial search problems. J. Parallel Distributed Comput. 76: 58-65 (2015) - [j8]Fabio Vandin, Alexandra Papoutsaki, Benjamin J. Raphael, Eli Upfal:
Accurate Computation of Survival Statistics in Genome-Wide Studies. PLoS Comput. Biol. 11(5) (2015) - [c17]Mark D. M. Leiserson, Hsin-Ta Wu, Fabio Vandin, Benjamin J. Raphael:
CoMEt: A Statistical Approach to Identify Combinations of Mutually Exclusive Alterations in Cancer. RECOMB 2015: 202-204 - [c16]Fabio Vandin, Benjamin J. Raphael, Eli Upfal:
On the Sample Complexity of Cancer Pathways Identification. RECOMB 2015: 326-337 - 2014
- [c15]Benjamin J. Raphael, Fabio Vandin:
Simultaneous Inference of Cancer Pathways and Tumor Progression from Cross-Sectional Mutation Data. RECOMB 2014: 250-264 - [c14]Matteo Riondato, Fabio Vandin:
Finding the True Frequent Itemsets. SDM 2014: 497-505 - 2013
- [j7]Lu He, Fabio Vandin, Gopal Pandurangan, Chris Bailey-Kellogg:
Ballast: A Ball-based Algorithm for Structural Motifs. J. Comput. Biol. 20(2): 137-151 (2013) - [c13]Fabio Vandin, Eli Upfal, Benjamin J. Raphael:
Identifying significant mutations in large cohorts of cancer genomes. ICCABS 2013: 1 - [c12]Andrea Pietracaprina, Geppino Pucci, Francesco Silvestri, Fabio Vandin:
Space-Efficient Parallel Algorithms for Combinatorial Search Problems. MFCS 2013: 717-728 - [c11]Fabio Vandin, Alexandra Papoutsaki, Benjamin J. Raphael, Eli Upfal:
Genome-Wide Survival Analysis of Somatic Mutations in Cancer. RECOMB 2013: 285-286 - [i5]Matteo Riondato, Fabio Vandin:
Controlling False Positives in Frequent Itemsets Mining through the VC-Dimension. CoRR abs/1301.1218 (2013) - [i4]Andrea Pietracaprina, Geppino Pucci, Francesco Silvestri, Fabio Vandin:
Space-Efficient Parallel Algorithms for Combinatorial Search Problems. CoRR abs/1306.2552 (2013) - 2012
- [j6]Fabio Vandin, Eli Upfal, Benjamin J. Raphael:
Finding Driver Pathways in Cancer: Models and Algorithms. Algorithms Mol. Biol. 7: 23 (2012) - [j5]Fabio Vandin, Eli Upfal, Benjamin J. Raphael:
Algorithms and Genome Sequencing: Identifying Driver Pathways in Cancer. Computer 45(3): 39-46 (2012) - [j4]Adam Kirsch, Michael Mitzenmacher, Andrea Pietracaprina, Geppino Pucci, Eli Upfal, Fabio Vandin:
An Efficient Rigorous Approach for Identifying Statistically Significant Frequent Itemsets. J. ACM 59(3): 12:1-12:22 (2012) - [c10]Fabio Vandin, Eli Upfal, Benjamin J. Raphael:
Workshop: Algorithms for discovery of mutated pathways in cancer. ICCABS 2012: 1 - [c9]Aris Anagnostopoulos, Ravi Kumar, Mohammad Mahdian, Eli Upfal, Fabio Vandin:
Algorithms on evolving graphs. ITCS 2012: 149-160 - [c8]Fabio Vandin, Patrick Clay, Eli Upfal, Benjamin J. Raphael:
Discovery of Mutated Subnetworks Associated with Clinical Data in Cancer. Pacific Symposium on Biocomputing 2012: 55-66 - [c7]Lu He, Fabio Vandin, Gopal Pandurangan, Chris Bailey-Kellogg:
Ballast: A Ball-Based Algorithm for Structural Motifs. RECOMB 2012: 79-93 - 2011
- [j3]Fabio Vandin, Eli Upfal, Benjamin J. Raphael:
Algorithms for Detecting Significantly Mutated Pathways in Cancer. J. Comput. Biol. 18(3): 507-522 (2011) - [j2]Roberto Grossi, Andrea Pietracaprina, Nadia Pisanti, Geppino Pucci, Eli Upfal, Fabio Vandin:
MADMX: A Strategy for Maximal Dense Motif Extraction. J. Comput. Biol. 18(4): 535-545 (2011) - [c6]Fabio Vandin, Eli Upfal, Benjamin J. Raphael:
De Novo Discovery of Mutated Driver Pathways in Cancer. RECOMB 2011: 499-500 - [c5]Fabio Vandin, Eli Upfal, Benjamin J. Raphael:
Finding Driver Pathways in Cancer: Models and Algorithms. WABI 2011: 314-325 - 2010
- [j1]Andrea Pietracaprina, Matteo Riondato, Eli Upfal, Fabio Vandin:
Mining top-K frequent itemsets through progressive sampling. Data Min. Knowl. Discov. 21(2): 310-326 (2010) - [c4]Fabio Vandin, Eli Upfal, Benjamin J. Raphael:
Algorithms for Detecting Significantly Mutated Pathways in Cancer. RECOMB 2010: 506-521 - [i3]Roberto Grossi, Andrea Pietracaprina, Nadia Pisanti, Geppino Pucci, Eli Upfal, Fabio Vandin:
MADMX: A Novel Strategy for Maximal Dense Motif Extraction. CoRR abs/1002.0874 (2010) - [i2]Adam Kirsch, Michael Mitzenmacher, Andrea Pietracaprina, Geppino Pucci, Eli Upfal, Fabio Vandin:
An Efficient Rigorous Approach for Identifying Statistically Significant Frequent Itemsets. CoRR abs/1002.1104 (2010) - [i1]Andrea Pietracaprina, Matteo Riondato, Eli Upfal, Fabio Vandin:
Mining Top-K Frequent Itemsets Through Progressive Sampling. CoRR abs/1006.5235 (2010)
2000 – 2009
- 2009
- [c3]Adam Kirsch, Michael Mitzenmacher, Andrea Pietracaprina, Geppino Pucci, Eli Upfal, Fabio Vandin:
An efficient rigorous approach for identifying statistically significant frequent itemsets. PODS 2009: 117-126 - [c2]Roberto Grossi, Andrea Pietracaprina, Nadia Pisanti, Geppino Pucci, Eli Upfal, Fabio Vandin:
MADMX: A Novel Strategy for Maximal Dense Motif Extraction. WABI 2009: 362-374 - 2007
- [c1]Andrea Pietracaprina, Fabio Vandin:
Efficient Incremental Mining of Top-K Frequent Closed Itemsets. Discovery Science 2007: 275-280
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-16 21:22 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint