
Jun Huan
Luke Huan
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2020
- [j35]Zhigang Sun, Hongwei Huo
, Jun Huan, Jeffrey Scott Vitter:
Feature reduction based on semantic similarity for graph classification. Neurocomputing 397: 114-126 (2020) - [j34]Chao Lan
, Sai Nivedita Chandrasekaran, Jun Huan:
On the Unreported-Profile-is-Negative Assumption for Predictive Cheminformatics. IEEE ACM Trans. Comput. Biol. Bioinform. 17(4): 1352-1363 (2020) - [j33]Jiang Bian, Haoyi Xiong, Yanjie Fu, Jun Huan, Zhishan Guo:
MP2SDA: Multi-Party Parallelized Sparse Discriminant Learning. ACM Trans. Knowl. Discov. Data 14(3): 26:1-26:22 (2020) - [c91]Jie An, Haoyi Xiong, Jun Huan, Jiebo Luo:
Ultrafast Photorealistic Style Transfer via Neural Architecture Search. AAAI 2020: 10443-10450 - [c90]Sohaib Kiani, Sana Awan, Jun Huan, Fengjun Li, Bo Luo:
WOLF: automated machine learning workflow management framework for malware detection and other applications. HotSoS 2020: 11:1-11:8 - [c89]Yuchen Bian, Jun Huan, Dejing Dou, Xiang Zhang:
Rethinking Local Community Detection: Query Nodes Replacement. ICDM 2020: 930-935 - [c88]Yingzhen Yang, Jiahui Yu, Nebojsa Jojic, Jun Huan, Thomas S. Huang:
FSNet: Compression of Deep Convolutional Neural Networks by Filter Summary. ICLR 2020 - [c87]Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, Zhanxing Zhu:
On the Noisy Gradient Descent that Generalizes as SGD. ICML 2020: 10367-10376 - [c86]Siyu Huang, Haoyi Xiong, Zhi-Qi Cheng, Qingzhong Wang
, Xingran Zhou, Bihan Wen
, Jun Huan, Dejing Dou:
Generating Person Images with Appearance-aware Pose Stylizer. IJCAI 2020: 623-629 - [c85]Dongsheng Luo, Yuchen Bian, Yaowei Yan, Xiao Liu, Jun Huan, Xiang Zhang:
Local Community Detection in Multiple Networks. KDD 2020: 266-274 - [i21]Siyu Huang, Haoyi Xiong, Tianyang Wang, Qingzhong Wang, Zeyu Chen, Jun Huan, Dejing Dou:
Parameter-Free Style Projection for Arbitrary Style Transfer. CoRR abs/2003.07694 (2020) - [i20]Siyu Huang, Haoyi Xiong, Zhi-Qi Cheng, Qingzhong Wang, Xingran Zhou, Bihan Wen, Jun Huan, Dejing Dou:
Generating Person Images with Appearance-aware Pose Stylizer. CoRR abs/2007.09077 (2020) - [i19]Dongsheng Luo, Yuchen Bian, Xiang Zhang, Jun Huan:
Attentive Social Recommendation: Towards User And Item Diversities. CoRR abs/2011.04797 (2020)
2010 – 2019
- 2019
- [j32]Qiang Zhou
, Wen'an Zhou, Bin Yang, Jun Huan:
Deep cycle autoencoder for unsupervised domain adaptation with generative adversarial networks. IET Comput. Vis. 13(7): 659-665 (2019) - [j31]Xiaoyang Chen, Hongwei Huo, Jun Huan, Jeffrey Scott Vitter:
An efficient algorithm for graph edit distance computation. Knowl. Based Syst. 163: 762-775 (2019) - [j30]Hao Zhang, Shuigeng Zhou, Jihong Guan, Jun Huan:
Measuring Conditional Independence by Independent Residuals for Causal Discovery. ACM Trans. Intell. Syst. Technol. 10(5): 50:1-50:19 (2019) - [c84]Haoyi Xiong, Kafeng Wang, Jiang Bian, Zhanxing Zhu, Cheng-Zhong Xu, Zhishan Guo, Jun Huan:
SpHMC: Spectral Hamiltonian Monte Carlo. AAAI 2019: 5516-5524 - [c83]Hannah Kim, Denys Katerenchuk, Daniel Billet, Jun Huan, Haesun Park, Boyang Li:
Understanding Actors and Evaluating Personae with Gaussian Embeddings. AAAI 2019: 6570-6577 - [c82]Zhi Feng, Jun Huan, Haoyi Xiong, Chuanyuan Song, Sijia Yang, Baoxin Zhao, Licheng Wang, Zeyu Chen, Shengwen Yang, Liping Liu:
SecureGBM: Secure Multi-Party Gradient Boosting. BigData 2019: 1312-1321 - [c81]Ruosi Wan, Haoyi Xiong, Xingjian Li, Zhanxing Zhu, Jun Huan:
Towards Making Deep Transfer Learning Never Hurt. ICDM 2019: 578-587 - [c80]Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Jun Huan:
Delta: Deep Learning Transfer using Feature Map with Attention for Convolutional Networks. ICLR (Poster) 2019 - [c79]Tianyang Wang, Jun Huan, Bo Li, Kaoning Hu:
Rethink Gaussian Denoising Prior for Real-World Image Denoising. ICTAI 2019: 1664-1668 - [c78]Fan Wu, Shuigeng Zhou, Kang Wang, Yi Xu, Jihong Guan, Jun Huan:
Simple Is Better: A Global Semantic Consistency Based End-to-End Framework for Effective Zero-Shot Learning. PRICAI (1) 2019: 98-112 - [c77]Tianyang Wang, Jun Huan, Michelle Zhu:
Instance-Based Deep Transfer Learning. WACV 2019: 367-375 - [i18]Wenqing Hu, Zhanxing Zhu, Haoyi Xiong, Jun Huan:
Quasi-potential as an implicit regularizer for the loss function in the stochastic gradient descent. CoRR abs/1901.06054 (2019) - [i17]Xingjian Li, Haoyi Xiong, Hanchao Wang, Yuxuan Rao, Liping Liu, Jun Huan:
DELTA: DEep Learning Transfer using Feature Map with Attention for Convolutional Networks. CoRR abs/1901.09229 (2019) - [i16]Yingzhen Yang, Xingjian Li, Jun Huan:
An Empirical Study on Regularization of Deep Neural Networks by Local Rademacher Complexity. CoRR abs/1902.00873 (2019) - [i15]Yingzhen Yang, Nebojsa Jojic, Jun Huan:
FSNet: Compression of Deep Convolutional Neural Networks by Filter Summary. CoRR abs/1902.03264 (2019) - [i14]Jie An, Haoyi Xiong, Jinwen Ma, Jiebo Luo, Jun Huan:
StyleNAS: An Empirical Study of Neural Architecture Search to Uncover Surprisingly Fast End-to-End Universal Style Transfer Networks. CoRR abs/1906.02470 (2019) - [i13]Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Zhanxing Zhu:
The Multiplicative Noise in Stochastic Gradient Descent: Data-Dependent Regularization, Continuous and Discrete Approximation. CoRR abs/1906.07405 (2019) - [i12]Hanchao Wang, Jun Huan:
AGAN: Towards Automated Design of Generative Adversarial Networks. CoRR abs/1906.11080 (2019) - [i11]Jie An, Haoyi Xiong, Jiebo Luo, Jun Huan, Jinwen Ma:
Fast Universal Style Transfer for Artistic and Photorealistic Rendering. CoRR abs/1907.03118 (2019) - [i10]Dou Goodman, Xingjian Li, Jun Huan, Tao Wei:
Improving Adversarial Robustness via Attention and Adversarial Logit Pairing. CoRR abs/1908.11435 (2019) - [i9]Isaac Ahern, Adam Noack, Luis Guzman-Nateras, Dejing Dou, Boyang Li, Jun Huan:
NormLime: A New Feature Importance Metric for Explaining Deep Neural Networks. CoRR abs/1909.04200 (2019) - [i8]Ruosi Wan, Haoyi Xiong, Xingjian Li, Zhanxing Zhu, Jun Huan:
Towards Making Deep Transfer Learning Never Hurt. CoRR abs/1911.07489 (2019) - [i7]Zhi Feng, Haoyi Xiong, Chuanyuan Song, Sijia Yang, Baoxin Zhao, Licheng Wang, Zeyu Chen, Shengwen Yang, Liping Liu, Jun Huan:
SecureGBM: Secure Multi-Party Gradient Boosting. CoRR abs/1911.11997 (2019) - [i6]Jie An, Haoyi Xiong, Jun Huan, Jiebo Luo:
Ultrafast Photorealistic Style Transfer via Neural Architecture Search. CoRR abs/1912.02398 (2019) - 2018
- [c76]Xiaoli Li, Jun Huan:
Interactions Modeling in Multi-Task Multi-View Learning with Consistent Task Diversity. CIKM 2018: 853-861 - [c75]Tianyang Wang, Jun Huan, Bo Li:
Data Dropout: Optimizing Training Data for Convolutional Neural Networks. ICTAI 2018: 39-46 - [r2]Jun Huan:
Frequent Graph Patterns. Encyclopedia of Database Systems (2nd ed.) 2018 - [i5]Tianyang Wang, Jun Huan, Bo Li:
Data Dropout: Optimizing Training Data for Convolutional Neural Networks. CoRR abs/1809.00193 (2018) - [i4]Tianyang Wang, Jun Huan, Michelle Zhu:
Instance-based Deep Transfer Learning. CoRR abs/1809.02776 (2018) - 2017
- [j29]Xiaoyang Chen, Hongwei Huo
, Jun Huan, Jeffrey Scott Vitter:
Efficient Graph Similarity Search in External Memory. IEEE Access 5: 4551-4560 (2017) - [j28]Alexios Koutsoukas, Keith J. Monaghan, Xiaoli Li, Jun Huan
:
Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J. Cheminformatics 9(1): 42:1-42:13 (2017) - [j27]Chao Lan, Yuhao Yang, Xiaoli Li, Bo Luo
, Jun Huan:
Learning Social Circles in Ego-Networks Based on Multi-View Network Structure. IEEE Trans. Knowl. Data Eng. 29(8): 1681-1694 (2017) - [c74]Xiaoli Li, Sai Nivedita Chandrasekaran, Jun Huan:
Lifelong multi-task multi-view learning using latent spaces. BigData 2017: 37-46 - [c73]Xiaoli Li, Jun Huan:
Constructivism Learning: A Learning Paradigm for Transparent Predictive Analytics. KDD 2017: 285-294 - [c72]Joseph St. Amand, Jun Huan:
Sparse Compositional Local Metric Learning. KDD 2017: 1097-1104 - [i3]Chao Lan, Jun Huan:
Discriminatory Transfer. CoRR abs/1707.00780 (2017) - [i2]Xiaoyang Chen, Hongwei Huo, Jun Huan, Jeffrey Scott Vitter:
Fast Computation of Graph Edit Distance. CoRR abs/1709.10305 (2017) - 2016
- [j26]Jingshan Huang, Karen Eilbeck, Barry Smith
, Judith A. Blake
, Dejing Dou, Weili Huang, Darren A. Natale, Alan Ruttenberg, Jun Huan, Michael T. Zimmermann
, Guoqian Jiang, Yu Lin, Bin Wu
, Harrison J. Strachan, Yongqun He
, Shaojie Zhang
, Xiaowei Wang, Zixing Liu, Glen M. Borchert, Ming Tan
:
The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology. J. Biomed. Semant. 7: 24 (2016) - [j25]Qiang Yu, Hongwei Huo, Ruixing Zhao, Dazheng Feng, Jeffrey Scott Vitter, Jun Huan:
RefSelect: a reference sequence selection algorithm for planted (l, d) motif search. BMC Bioinform. 17(S-9): 266 (2016) - [j24]Jingshan Huang, Karen Eilbeck, Barry Smith
, Judith A. Blake
, Dejing Dou, Weili Huang, Darren A. Natale, Alan Ruttenberg, Jun Huan, Michael T. Zimmermann
, Guoqian Jiang, Yu Lin, Bin Wu
, Harrison J. Strachan, Nisansa de Silva
, Mohan Vamsi Kasukurthi, Vikash Kumar Jha, Yongqun He
, Shaojie Zhang, Xiaowei Wang, Zixing Liu, Glen M. Borchert, Ming Tan
:
The development of non-coding RNA ontology. Int. J. Data Min. Bioinform. 15(3): 214-232 (2016) - [c71]Sai Nivedita Chandrasekaran, Alexios Koutsoukas, Jun Huan:
Investigating Multiview and Multitask Learning Frameworks for Predicting Drug-Disease Associations. BCB 2016: 138-145 - [c70]Jun Huan:
Deep-Learning: Investigating feed-forward deep Neural Networks for modeling high throughput chemical bioactivity data. BIBM 2016: 5 - [c69]Chao Lan, Sai Nivedita Chandrasekaran, Jun Huan:
Learning with Positive and Unknown Features. BIBM 2016: 613-618 - [c68]Sai Nivedita Chandrasekaran, Jun Huan:
Weighted multiview learning for predicting drug-disease associations. BIBM 2016: 699-702 - [c67]Chao Lan, Sai Nivedita Chandrasekaran, Jun Huan:
A distributed and privatized framework for drug-target interaction prediction. BIBM 2016: 731-734 - [c66]Xiaoli Li, Jun Huan:
aptMTVL: Nailing Interactions in Multi-Task Multi-View Multi-Label Learning using Adaptive-basis Multilinear Factor Analyzers. CIKM 2016: 1171-1180 - [c65]Joseph St. Amand, Jun Huan:
Discriminative View Learning for Single View Co-Training. CIKM 2016: 2221-2226 - [c64]Hongwei Huo, Zhigang Sun, Shuangjiang Li, Jeffrey Scott Vitter, Xinkun Wang, Qiang Yu, Jun Huan:
CS2A: A Compressed Suffix Array-Based Method for Short Read Alignment. DCC 2016: 271-278 - [c63]Gowtham Kumar Golla, Jordan A. Carlson, Jun Huan, Jacqueline Kerr, Tarrah Mitchell, Kelsey Borner:
Developing Novel Machine Learning Algorithms to Improve Sedentary Assessment for Youth Health Enhancement. ICHI 2016: 375-379 - [c62]Chao Lan, Xiaoli Li, Yujie Deng, Joseph St. Amand, Jun Huan:
A PAC bound for joint matrix completion based on Partially Collective Matrix Factorization. ICPR 2016: 2628-2633 - [c61]Chao Lan, Yujie Deng, Xiaoli Li, Jun Huan:
Co-regularized least square regression for multi-view multi-class classification. IJCNN 2016: 342-347 - [c60]Chao Lan, Yujie Deng, Jun Huan:
A disagreement-based active matrix completion approach with provable guarantee. IJCNN 2016: 4082-4088 - [c59]Chao Lan, Xiaoli Li, Yujie Deng, Jun Huan:
Partial Collective Matrix Factorization and its PAC Bound. ISAIM 2016 - [c58]Chao Lan, Jianxin Wang, Jun Huan:
Towards a Theoretical Understanding of Negative Transfer in Collective Matrix Factorization. UAI 2016 - [i1]Xiaoyang Chen, Hongwei Huo, Jun Huan, Jeffrey Scott Vitter:
MSQ-Index: A Succinct Index for Fast Graph Similarity Search. CoRR abs/1612.09155 (2016) - 2015
- [j23]Qiang Yu, Hongwei Huo, Jeffrey Scott Vitter, Jun Huan, Yakov Nekrich
:
An Efficient Exact Algorithm for the Motif Stem Search Problem over Large Alphabets. IEEE ACM Trans. Comput. Biol. Bioinform. 12(2): 384-397 (2015) - [c57]Qiang Yu, Hongwei Huo, Ruixing Zhao, Dazheng Feng, Jeffrey Scott Vitter, Jun Huan:
Reference sequence selection for motif searches. BIBM 2015: 569-574 - [c56]Meenakshi Mishra, Jun Huan:
Learning Task Grouping using Supervised Task Space Partitioning in Lifelong Multitask Learning. CIKM 2015: 1091-1100 - [c55]Chao Lan, Jun Huan:
Reducing the Unlabeled Sample Complexity of Semi-Supervised Multi-View Learning. KDD 2015: 627-634 - [e5]Jun Huan, Satoru Miyano, Amarda Shehu, Xiaohua Tony Hu, Bin Ma, Sanguthevar Rajasekaran, Vijay K. Gombar, Matthieu-P. Schapranow, Illhoi Yoo, Jiayu Zhou, Brian Chen, Vinay Pai, Brian G. Pierce:
2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015, Washington, DC, USA, November 9-12, 2015. IEEE Computer Society 2015, ISBN 978-1-4673-6799-8 [contents] - 2014
- [j22]Hongliang Fei, Jun Huan:
Structured Sparse Boosting for Graph Classification. ACM Trans. Knowl. Discov. Data 9(1): 4:1-4:22 (2014) - [c54]Qiang Yu, Hongwei Huo, Xiaoyang Chen, Haitao Guo, Jeffrey Scott Vitter, Jun Huan:
An efficient motif finding algorithm for large DNA data sets. BIBM 2014: 397-402 - [c53]Yuhao Yang, Chao Lan, Xiaoli Li, Bo Luo
, Jun Huan:
Automatic Social Circle Detection Using Multi-View Clustering. CIKM 2014: 1019-1028 - [e4]Jimmy J. Lin, Jian Pei, Xiaohua Hu, Wo Chang, Raghunath Nambiar, Charu C. Aggarwal, Nick Cercone, Vasant G. Honavar, Jun Huan, Bamshad Mobasher, Saumyadipta Pyne:
2014 IEEE International Conference on Big Data, Big Data 2014, Washington, DC, USA, October 27-30, 2014. IEEE Computer Society 2014, ISBN 978-1-4799-5665-4 [contents] - 2013
- [j21]Meenakshi Mishra, Hongliang Fei, Jun Huan:
Computational prediction of toxicity. Int. J. Data Min. Bioinform. 8(3): 338-348 (2013) - [j20]Hongliang Fei, Jun Huan:
Structured feature selection and task relationship inference for multi-task learning. Knowl. Inf. Syst. 35(2): 345-364 (2013) - [j19]Said Bleik, Meenakshi Mishra, Jun Huan, Min Song
:
Text Categorization of Biomedical Data Sets Using Graph Kernels and a Controlled Vocabulary. IEEE ACM Trans. Comput. Biol. Bioinform. 10(5): 1211-1217 (2013) - [j18]Ruoyi Jiang, Hongliang Fei, Jun Huan:
A Family of Joint Sparse PCA Algorithms for Anomaly Localization in Network Data Streams. IEEE Trans. Knowl. Data Eng. 25(11): 2421-2433 (2013) - [c52]Peng Hao, Jintao Zhang, Jun Huan:
A new on-line chemical biology data visualization system. BIBM 2013: 35-37 - [c51]Qiang Yu, Hongwei Huo, Jeffrey Scott Vitter, Jun Huan, Yakov Nekrich
:
StemFinder: An efficient algorithm for searching motif stems over large alphabets. BIBM 2013: 473-476 - [c50]Jingshan Huang, Jun Huan, Alexander Tropsha, Jiangbo Dang, He Zhang, Min Xiong:
Semantics-driven frequent data pattern mining on electronic health records for effective adverse drug event monitoring. BIBM 2013: 608-611 - [c49]Aaron Smalter Hall, Jun Huan:
KUChemBio: A repository of computational chemical biology data sets. BigData 2013: 37-42 - [c48]Meenakshi Mishra, Jun Huan:
Multitask Learning with Feature Selection for Groups of Related Tasks. ICDM 2013: 1157-1162 - 2012
- [j17]Mohammad Al Hasan, Jun Huan, Jake Yue Chen, Mohammed J. Zaki
:
Biological knowledge discovery and data mining. Sci. Program. 20(1): 1-2 (2012) - [j16]Brian Quanz, Jun Huan, Meenakshi Mishra:
Knowledge Transfer with Low-Quality Data: A Feature Extraction Issue. IEEE Trans. Knowl. Data Eng. 24(10): 1789-1802 (2012) - [c47]Jintao Zhang, Gerald H. Lushington
, Jun Huan:
Multi-target protein-chemical interaction prediction using task-regularized and boosted multi-task learning. BCB 2012: 60-67 - [c46]Jintao Zhang, Jun Huan:
Drug-induced QT prolongation prediction using co-regularized multi-view learning. BIBM 2012: 1-6 - [c45]Avindra Fernando, Jun Huan, Justin P. Blumenstiel
, Jin Lin, Xue-wen Chen, Bo Luo
:
Identification of transposable elements of the giant panda (Ailuropoda melanoleuca) genome. BIBM Workshops 2012: 674-681 - [c44]Yi Jia, Wenrong Zeng, Jun Huan:
Non-stationary bayesian networks based on perfect simulation. CIKM 2012: 1095-1104 - [c43]Brian Quanz, Jun Huan:
CoNet: feature generation for multi-view semi-supervised learning with partially observed views. CIKM 2012: 1273-1282 - [c42]Xin Huang, Hong Cheng, Jiong Yang, Jeffrey Xu Yu, Hongliang Fei, Jun Huan:
Semi-supervised Clustering of Graph Objects: A Subgraph Mining Approach. DASFAA (1) 2012: 197-212 - [c41]Brian Quanz, Jun Huan:
When Additional Views are Not Free: Active View Completion for Multi-view Semi-Supervised Learning. ICDM Workshops 2012: 169-178 - [c40]Meenakshi Mishra, Jun Huan, Said Bleik, Min Song
:
Biomedical text categorization with concept graph representations using a controlled vocabulary. BIOKDD 2012: 26-32 - [c39]Jintao Zhang, Jun Huan:
Inductive multi-task learning with multiple view data. KDD 2012: 543-551 - 2011
- [j15]Jintao Zhang, Gerald H. Lushington
, Jun Huan:
The BioAssay network and its implications to future therapeutic discovery. BMC Bioinform. 12(S-5): S1 (2011) - [j14]Jintao Zhang, Gerald H. Lushington
, Jun Huan:
Characterizing the Diversity and Biological Relevance of the MLPCN Assay Manifold and Screening Set. J. Chem. Inf. Model. 51(6): 1205-1215 (2011) - [j13]Yi Jia, Jintao Zhang, Jun Huan:
An efficient graph-mining method for complicated and noisy data with real-world applications. Knowl. Inf. Syst. 28(2): 423-447 (2011) - [j12]Fang-Xiang Wu, Jun Huan:
Guest Editorial: Special Focus on Bioinformatics and Systems Biology. IEEE ACM Trans. Comput. Biol. Bioinform. 8(2): 292-293 (2011) - [c38]Aaron Smalter Hall, Jun Huan, Gerald H. Lushington
:
Similarity boosting for label noise tolerance in protein-chemical interaction prediction. BCB 2011: 226-234 - [c37]Meenakshi Mishra, Brian Potetz, Jun Huan:
Bayesian Classifiers for Chemical Toxicity Prediction. BIBM 2011: 595-599 - [c36]Hongliang Fei, Ruoyi Jiang, Yuhao Yang, Bo Luo
, Jun Huan:
Content based social behavior prediction: a multi-task learning approach. CIKM 2011: 995-1000 - [c35]Brian Quanz, Jun Huan, Meenakshi Mishra:
Knowledge transfer with low-quality data: A feature extraction issue. ICDE 2011: 769-779 - [c34]Hongliang Fei, Jun Huan:
Structured Feature Selection and Task Relationship Inference for Multi-task Learning. ICDM 2011: 171-180 - [c33]Ruoyi Jiang, Hongliang Fei, Jun Huan:
Anomaly localization for network data streams with graph joint sparse PCA. KDD 2011: 886-894 - [p1]Xiaohong Wang, Jun Huan:
G-Hash: Towards Fast Kernel-Based Similarity Search in Large Graph Databases. Graph Data Management 2011: 176-213 - [e3]Mohammed J. Zaki, Jake Yue Chen, Mohammad Al Hasan, Jun Huan:
Proceedings of the Tenth International Workshop on Data Mining in Bioinformatics, BIOKDD '11, San Diego, California, USA, August 21, 2011. ACM 2011, ISBN 978-1-4503-0839-7 [contents] - 2010
- [j11]Xiaohong Wang, Jun Huan, Aaron M. Smalter, Gerald H. Lushington
:
Application of kernel functions for accurate similarity search in large chemical databases. BMC Bioinform. 11(S-3): 8 (2010) - [j10]Yi Jia, Jun Huan:
Constructing non-stationary Dynamic Bayesian Networks with a flexible lag choosing mechanism. BMC Bioinform. 11(S-6): S27 (2010) - [j9]Seak Fei Lei, Jun Huan:
Towards site-based protein functional annotations. Int. J. Data Min. Bioinform. 4(4): 452-470 (2010) - [j8]Aaron M. Smalter, Jun Huan, Yi Jia, Gerald H. Lushington:
GPD: A Graph Pattern Diffusion Kernel for Accurate Graph Classification with Applications in Cheminformatics. IEEE ACM Trans. Comput. Biol. Bioinform. 7(2): 197-207 (2010) - [j7]Deepak Bandyopadhyay, Jun Huan, Jinze Liu, Jan F. Prins, Jack Snoeyink
, Wei Wang, Alexander Tropsha:
Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs. IEEE Trans. Inf. Technol. Biomed. 14(5): 1137-1143 (2010) - [c32]Jintao Zhang, Gerald H. Lushington
, Jun Huan:
Exploratory analysis of the BioAssay Network with implications to therapeutic discovery. BIBM 2010: 569-572 - [c31]Meenakshi Mishra, Hongliang Fei, Jun Huan:
Computational prediction of toxicity. BIBM 2010: 686-691 - [c30]Hongliang Fei, Brian Quanz, Jun Huan:
Regularization and feature selection for networked features. CIKM 2010: 1893-1896 - [c29]Jun Huan:
Knowledge Discovery in Academic Drug Discovery Programs: Opportunities and Challenges. ICDM 2010: 1218 - [c28]Jintao Zhang, Jun Huan:
Novel biological network features discovery for in silico identification of drug targets. IHI 2010: 144-152 - [c27]Hongliang Fei, Jun Huan:
Boosting with structure information in the functional space: an application to graph classification. KDD 2010: 643-652
2000 – 2009
- 2009
- [j6]Yi Jia, Jun Huan, Vincent Buhr, Jintao Zhang, Leonidas N. Carayannopoulos:
Towards comprehensive structural motif mining for better fold annotation in the "twilight zone" of sequence dissimilarity. BMC Bioinform. 10(S-1) (2009) - [j5]Aaron M. Smalter, Jun Huan, Gerald H. Lushington
:
Graph Wavelet Alignment Kernels for Drug Virtual Screening. J. Bioinform. Comput. Biol. 7(3): 473-497 (2009) - [j4]