default search action
Paolo Tonella
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j94]Matteo Biagiola, Andrea Stocco, Vincenzo Riccio, Paolo Tonella:
Two is better than one: digital siblings to improve autonomous driving testing. Empir. Softw. Eng. 29(4): 72 (2024) - [j93]Michael Weiss, Paolo Tonella:
Adopting Two Supervisors for Efficient Use of Large-Scale Remote Deep Neural Networks. ACM Trans. Softw. Eng. Methodol. 33(1): 28:1-28:29 (2024) - [j92]Michael Weiss, Paolo Tonella:
Adopting Two Supervisors for Efficient Use of Large-Scale Remote Deep Neural Networks - RCR Report. ACM Trans. Softw. Eng. Methodol. 33(1): 29:1-29:4 (2024) - [j91]Matteo Biagiola, Paolo Tonella:
Testing of Deep Reinforcement Learning Agents with Surrogate Models. ACM Trans. Softw. Eng. Methodol. 33(3): 73:1-73:33 (2024) - [j90]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Focused Test Generation for Autonomous Driving Systems. ACM Trans. Softw. Eng. Methodol. 33(6): 152 (2024) - [j89]Jon Ayerdi, Valerio Terragni, Gunel Jahangirova, Aitor Arrieta, Paolo Tonella:
GenMorph: Automatically Generating Metamorphic Relations via Genetic Programming. IEEE Trans. Software Eng. 50(7): 1888-1900 (2024) - [j88]Matteo Biagiola, Paolo Tonella:
Boundary State Generation for Testing and Improvement of Autonomous Driving Systems. IEEE Trans. Software Eng. 50(8): 2040-2053 (2024) - [c197]Michele Pasqua, Mariano Ceccato, Paolo Tonella:
Hypertesting of Programs: Theoretical Foundation and Automated Test Generation. ICSE 2024: 115:1-115:12 - [c196]Sajad Khatiri, Sebastiano Panichella, Paolo Tonella:
Simulation-based Testing of Unmanned Aerial Vehicles with Aerialist. ICSE Companion 2024: 134-138 - [c195]Ruben Grewal, Paolo Tonella, Andrea Stocco:
Predicting Safety Misbehaviours in Autonomous Driving Systems Using Uncertainty Quantification. ICST 2024: 70-81 - [c194]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
Spectral Analysis of the Relation between Deep Learning Faults and Neural Activation Values. ICST 2024: 245-256 - [c193]Andréa Doreste, Matteo Biagiola, Paolo Tonella:
Adversarial Testing with Reinforcement Learning: A Case Study on Autonomous Driving. ICST 2024: 293-304 - [d42]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
Spectral Analysis of the Relation between Deep Learning Faults and Neural Activation Values: Replication Package. Zenodo, 2024 - [i30]Luca Giamattei, Matteo Biagiola, Roberto Pietrantuono, Stefano Russo, Paolo Tonella:
Reinforcement Learning for Online Testing of Autonomous Driving Systems: a Replication and Extension Study. CoRR abs/2403.13729 (2024) - [i29]Ruben Grewal, Paolo Tonella, Andrea Stocco:
Predicting Safety Misbehaviours in Autonomous Driving Systems using Uncertainty Quantification. CoRR abs/2404.18573 (2024) - 2023
- [j87]Andrea Romdhana, Alessio Merlo, Mariano Ceccato, Paolo Tonella:
Assessing the security of inter-app communications in android through reinforcement learning. Comput. Secur. 131: 103311 (2023) - [j86]Andrea Stocco, Brian Pulfer, Paolo Tonella:
Model vs system level testing of autonomous driving systems: a replication and extension study. Empir. Softw. Eng. 28(3): 73 (2023) - [j85]Michael Weiss, André García Gómez, Paolo Tonella:
Generating and detecting true ambiguity: a forgotten danger in DNN supervision testing. Empir. Softw. Eng. 28(6): 146 (2023) - [j84]Michael Weiss, Paolo Tonella:
Uncertainty quantification for deep neural networks: An empirical comparison and usage guidelines. Softw. Test. Verification Reliab. 33(6) (2023) - [j83]Antonia Bertolino, Guglielmo De Angelis, Breno Miranda, Paolo Tonella:
In vivo test and rollback of Java applications as they are. Softw. Test. Verification Reliab. 33(7) (2023) - [j82]Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, Paolo Tonella:
Efficient and Effective Feature Space Exploration for Testing Deep Learning Systems. ACM Trans. Softw. Eng. Methodol. 32(2): 49:1-49:38 (2023) - [j81]Andrea Stocco, Brian Pulfer, Paolo Tonella:
Mind the Gap! A Study on the Transferability of Virtual Versus Physical-World Testing of Autonomous Driving Systems. IEEE Trans. Software Eng. 49(4): 1928-1940 (2023) - [c192]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
An Empirical Study on Low- and High-Level Explanations of Deep Learning Misbehaviours. ESEM 2023: 1-11 - [c191]Paolo Tonella:
The Road Toward Dependable AI Based Systems. ICSE 2023: 2 - [c190]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime: from Real Faults to Mutation Testing Tool for Deep Learning. ICSE Companion 2023: 68-72 - [c189]Vincenzo Riccio, Paolo Tonella:
When and Why Test Generators for Deep Learning Produce Invalid Inputs: an Empirical Study. ICSE 2023: 1161-1173 - [c188]Jinhan Kim, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella, Shin Yoo:
Repairing DNN Architecture: Are We There Yet? ICST 2023: 234-245 - [c187]Sajad Khatiri, Sebastiano Panichella, Paolo Tonella:
Simulation-based Test Case Generation for Unmanned Aerial Vehicles in the Neighborhood of Real Flights. ICST 2023: 281-292 - [c186]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
DeepAtash: Focused Test Generation for Deep Learning Systems. ISSTA 2023: 954-966 - [c185]Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, Paolo Tonella:
DeepHyperion: Exploring the Feature Space of Deep Learning-based Systems through Illumination Search. Software Engineering 2023: 131-132 - [e2]Satish Chandra, Kelly Blincoe, Paolo Tonella:
Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San Francisco, CA, USA, December 3-9, 2023. ACM 2023 [contents] - [d41]Jon Ayerdi, Valerio Terragni, Gunel Jahangirova, Arrieta Arrieta, Paolo Tonella:
Replication package for "GenMorph: Automatically Generating Metamorphic Relations via Genetic Programming". Zenodo, 2023 - [d40]Michael Weiss, André García Gómez, Paolo Tonella:
Replication package for the EMSE paper "Generating and Detecting True Ambiguity: A Forgotten Danger in DNN Supervision Testing". Zenodo, 2023 - [d39]Michael Weiss, Paolo Tonella:
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replication Paper). Version v0.1.1. Zenodo, 2023 [all versions] - [d38]Michael Weiss, Paolo Tonella:
Uncertainty-wizard: Fast and user-friendly neural network uncertainty quantification. Version v0.4.0. Zenodo, 2023 [all versions] - [d37]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: An Empirical Study on Low- and High-Level Explanations of Deep Learning Misbehaviours. Version v0.1.0. Zenodo, 2023 [all versions] - [d36]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: An Empirical Study on Low- and High-Level Explanations of Deep Learning Misbehaviours. Version v0.1.0. Zenodo, 2023 [all versions] - [d35]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash: Focused Test Generation for Deep Learning Systems. Version 1. Zenodo, 2023 [all versions] - [d34]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash: Focused Test Generation for Deep Learning Systems. Version 2. Zenodo, 2023 [all versions] - [d33]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash: Focused Test Generation for Deep Learning Systems. Version v0.1.0. Zenodo, 2023 [all versions] - [d32]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash: Focused Test Generation for Deep Learning Systems. Version v0.1.0. Zenodo, 2023 [all versions] - [d31]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash: Focused Test Generation for Deep Learning Systems. Version v0.1.0. Zenodo, 2023 [all versions] - [d30]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash: Focused Test Generation for Deep Learning Systems. Version v0.1.0. Zenodo, 2023 [all versions] - [d29]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash: Focused Test Generation for Deep Learning Systems. Version v0.1.0. Zenodo, 2023 [all versions] - [d28]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash: Focused Test Generation for Deep Learning Systems. Version v0.1.0. Zenodo, 2023 [all versions] - [d27]Tahereh Zohdinasab, Vincenzo Riccio, Paolo Tonella:
Replication Package: DeepAtash-LR: Focused Test Generation for Autonomous Driving Systems. Zenodo, 2023 - [i28]Jinhan Kim, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella, Shin Yoo:
Repairing DNN Architecture: Are We There Yet? CoRR abs/2301.11568 (2023) - [i27]Michael Weiss, Paolo Tonella:
Adopting Two Supervisors for Efficient Use of Large-Scale Remote Deep Neural Networks. CoRR abs/2304.02654 (2023) - [i26]Matteo Biagiola, Andrea Stocco, Vincenzo Riccio, Paolo Tonella:
Two is Better Than One: Digital Siblings to Improve Autonomous Driving Testing. CoRR abs/2305.08060 (2023) - [i25]Matteo Biagiola, Paolo Tonella:
Testing of Deep Reinforcement Learning Agents with Surrogate Models. CoRR abs/2305.12751 (2023) - [i24]Andrea Stocco, Alexandra Willi, Luigi Libero Lucio Starace, Matteo Biagiola, Paolo Tonella:
Neural Embeddings for Web Testing. CoRR abs/2306.07400 (2023) - [i23]Matteo Biagiola, Paolo Tonella:
Boundary State Generation for Testing and Improvement of Autonomous Driving Systems. CoRR abs/2307.10590 (2023) - [i22]Jon Ayerdi, Valerio Terragni, Gunel Jahangirova, Aitor Arrieta, Paolo Tonella:
Automatically Generating Metamorphic Relations via Genetic Programming. CoRR abs/2312.15302 (2023) - 2022
- [j80]Antonia Bertolino, Pietro Braione, Guglielmo De Angelis, Luca Gazzola, Fitsum Meshesha Kifetew, Leonardo Mariani, Matteo Orrù, Mauro Pezzè, Roberto Pietrantuono, Stefano Russo, Paolo Tonella:
A Survey of Field-based Testing Techniques. ACM Comput. Surv. 54(5): 92:1-92:39 (2022) - [j79]Andrea Stocco, Paolo Tonella:
Confidence-driven weighted retraining for predicting safety-critical failures in autonomous driving systems. J. Softw. Evol. Process. 34(10) (2022) - [j78]Andrea Romdhana, Alessio Merlo, Mariano Ceccato, Paolo Tonella:
Deep Reinforcement Learning for Black-box Testing of Android Apps. ACM Trans. Softw. Eng. Methodol. 31(4): 65:1-65:29 (2022) - [j77]Matteo Biagiola, Paolo Tonella:
Testing the Plasticity of Reinforcement Learning-based Systems. ACM Trans. Softw. Eng. Methodol. 31(4): 80:1-80:46 (2022) - [c184]Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, Maite Arratibel:
Evolutionary generation of metamorphic relations for cyber-physical systems. GECCO Companion 2022: 15-16 - [c183]Andrea Romdhana, Mariano Ceccato, Alessio Merlo, Paolo Tonella:
IFRIT: Focused Testing through Deep Reinforcement Learning. ICST 2022: 24-34 - [c182]Michael Weiss, Paolo Tonella:
Simple techniques work surprisingly well for neural network test prioritization and active learning (replicability study). ISSTA 2022: 139-150 - [c181]Andrea Stocco, Paulo J. Nunes, Marcelo d'Amorim, Paolo Tonella:
ThirdEye: Attention Maps for Safe Autonomous Driving Systems. ASE 2022: 102:1-102:12 - [p2]Chiara Di Francescomarino, Paolo Tonella:
The BPMN Visual Query Language and Process Querying Framework. Process Querying Methods 2022: 181-218 - [d26]Sajad Khatiri, Sebastiano Panichella, Paolo Tonella:
Replication Package: "Simulation-based Test Case Generation for Unmanned Aerial Vehicles in the Neighborhood of Real Flights". Zenodo, 2022 - [d25]Michael Weiss, Paolo Tonella:
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replication Paper). Zenodo, 2022 - [d24]Michael Weiss, Paolo Tonella:
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replication Paper). Version v0.1.0. Zenodo, 2022 [all versions] - [d23]Michael Weiss, Paolo Tonella:
Replication Package: Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning. Version v0.1.0. Zenodo, 2022 [all versions] - [d22]Michael Weiss, Paolo Tonella:
Replication Package: Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning. Version v0.1.0. Zenodo, 2022 [all versions] - [d21]Michael Weiss, Paolo Tonella:
Replication Package: Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning. Version v0.1.0. Zenodo, 2022 [all versions] - [d20]Michael Weiss, Paolo Tonella:
Replication Package: Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning. Version v0.1.0. Zenodo, 2022 [all versions] - [d19]Michael Weiss, Paolo Tonella:
Replication Package: Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning. Version v0.1.0. Zenodo, 2022 [all versions] - [i21]Michael Weiss, Paolo Tonella:
Simple Techniques Work Surprisingly Well for Neural Network Test Prioritization and Active Learning (Replicability Study). CoRR abs/2205.00664 (2022) - [i20]Michael Weiss, André García Gómez, Paolo Tonella:
A Forgotten Danger in DNN Supervision Testing: Generating and Detecting True Ambiguity. CoRR abs/2207.10495 (2022) - [i19]Michael Weiss, Paolo Tonella:
Uncertainty Quantification for Deep Neural Networks: An Empirical Comparison and Usage Guidelines. CoRR abs/2212.07118 (2022) - [i18]Vincenzo Riccio, Paolo Tonella:
When and Why Test Generators for Deep Learning Produce Invalid Inputs: an Empirical Study. CoRR abs/2212.11368 (2022) - 2021
- [j76]Maurizio Leotta, Filippo Ricca, Paolo Tonella:
Sidereal: Statistical adaptive generation of robust locators for web testing. Softw. Test. Verification Reliab. 31(3) (2021) - [j75]Héctor D. Menéndez, Gunel Jahangirova, Federica Sarro, Paolo Tonella, David Clark:
Diversifying Focused Testing for Unit Testing. ACM Trans. Softw. Eng. Methodol. 30(4): 44:1-44:24 (2021) - [j74]Gunel Jahangirova, David Clark, Mark Harman, Paolo Tonella:
An Empirical Validation of Oracle Improvement. IEEE Trans. Software Eng. 47(8): 1708-1728 (2021) - [c180]Paolo Tonella:
Keynote Speaker. AITest 2021: xv - [c179]Valerio Terragni, Gunel Jahangirova, Mauro Pezzè, Paolo Tonella:
Improving assertion oracles with evolutionary computation. GECCO Companion 2021: 45-46 - [c178]Valerio Terragni, Gunel Jahangirova, Paolo Tonella, Mauro Pezzè:
GAssert: A Fully Automated Tool to Improve Assertion Oracles. ICSE (Companion Volume) 2021: 85-88 - [c177]Michael Weiss, Rwiddhi Chakraborty, Paolo Tonella:
A Review and Refinement of Surprise Adequacy. DeepTest@ICSE 2021: 17-24 - [c176]Michael Weiss, Paolo Tonella:
Fail-Safe Execution of Deep Learning based Systems through Uncertainty Monitoring. ICST 2021: 24-35 - [c175]Gunel Jahangirova, Andrea Stocco, Paolo Tonella:
Quality Metrics and Oracles for Autonomous Vehicles Testing. ICST 2021: 194-204 - [c174]Emanuele Viglianisi, Mariano Ceccato, Paolo Tonella:
Summary of: A Federated Society of Bots for Smart Contract Testing. ICST 2021: 282-283 - [c173]Andrea Romdhana, Mariano Ceccato, Gabriel Claudiu Georgiu, Alessio Merlo, Paolo Tonella:
COSMO: Code Coverage Made Easier for Android. ICST 2021: 417-423 - [c172]Michael Weiss, Paolo Tonella:
Uncertainty-Wizard: Fast and User-Friendly Neural Network Uncertainty Quantification. ICST 2021: 436-441 - [c171]Dario Olianas, Maurizio Leotta, Filippo Ricca, Matteo Biagiola, Paolo Tonella:
STILE: a Tool for Parallel Execution of E2E Web Test Scripts. ICST 2021: 460-465 - [c170]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime: mutation testing of deep learning systems based on real faults. ISSTA 2021: 67-78 - [c169]Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, Paolo Tonella:
DeepHyperion: exploring the feature space of deep learning-based systems through illumination search. ISSTA 2021: 79-90 - [c168]Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepMetis: Augmenting a Deep Learning Test Set to Increase its Mutation Score. ASE 2021: 355-367 - [c167]Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria Sagardui, Maite Arratibel:
Generating metamorphic relations for cyber-physical systems with genetic programming: an industrial case study. ESEC/SIGSOFT FSE 2021: 1264-1274 - [d18]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime and DeepMutation++ mutations for UnityEyes and Movie Recommender Systems. Zenodo, 2021 - [d17]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime mutations for MNIST. Zenodo, 2021 - [d16]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime and DeepMutation++ mutations for MNIST. Zenodo, 2021 - [d15]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime mutations for Udacity self-driving car system. Zenodo, 2021 - [d14]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime and DeepMutation++ mutations for Udacity self-driving car system. Zenodo, 2021 - [d13]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime mutations for Speaker Recognition system. Zenodo, 2021 - [d12]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime and DeepMutation++ mutations for Speaker Recognition system. Zenodo, 2021 - [d11]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
Replication package for the "DeepCrime: Mutation Testing of Deep Learning Systems based on Real Faults" paper. Version 1. Zenodo, 2021 [all versions] - [d10]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
Replication package for the "DeepCrime: Mutation Testing of Deep Learning Systems based on Real Faults" paper. Version 2. Zenodo, 2021 [all versions] - [d9]Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepCrime: Mutation Testing of Deep Learning Systems Based on Real Faults (Tool). Zenodo, 2021 - [d8]Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
Experimental data for "DeepMetis: Augmenting a Deep Learning Test Set to Increase its Mutation Score" paper. Zenodo, 2021 - [d7]Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, Paolo Tonella:
Replication Package: DeepHyperion: Exploring the Feature Space of Deep Learning-Based Systems through Illumination Search. Version v0.1.0. Zenodo, 2021 [all versions] - [d6]Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, Paolo Tonella:
Replication Package: DeepHyperion: Exploring the Feature Space of Deep Learning-Based Systems through Illumination Search. Version v0.1.0. Zenodo, 2021 [all versions] - [i17]Michael Weiss, Paolo Tonella:
Uncertainty-Wizard: Fast and User-Friendly Neural Network Uncertainty Quantification. CoRR abs/2101.00982 (2021) - [i16]Andrea Romdhana, Alessio Merlo, Mariano Ceccato, Paolo Tonella:
Deep Reinforcement Learning for Black-Box Testing of Android Apps. CoRR abs/2101.02636 (2021) - [i15]Michael Weiss, Paolo Tonella:
Fail-Safe Execution of Deep Learning based Systems through Uncertainty Monitoring. CoRR abs/2102.00902 (2021) - [i14]Valerio Terragni, Gunel Jahangirova, Paolo Tonella, Mauro Pezzè:
GAssert: A Fully Automated Tool to Improve Assertion Oracles. CoRR abs/2103.02901 (2021) - [i13]Michael Weiss, Rwiddhi Chakraborty, Paolo Tonella:
A Review and Refinement of Surprise Adequacy. CoRR abs/2103.05939 (2021) - [i12]Tahereh Zohdinasab, Vincenzo Riccio, Alessio Gambi, Paolo Tonella:
DeepHyperion: Exploring the Feature Space of Deep Learning-Based Systems through Illumination Search. CoRR abs/2107.06997 (2021) - [i11]Vincenzo Riccio, Nargiz Humbatova, Gunel Jahangirova, Paolo Tonella:
DeepMetis: Augmenting a Deep Learning Test Set to Increase its Mutation Score. CoRR abs/2109.07514 (2021) - [i10]Andrea Stocco, Brian Pulfer, Paolo Tonella:
Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems. CoRR abs/2112.11255 (2021) - 2020
- [j73]