default search action
Ludovico Boratto
Person information
- affiliation: University of Cagliari, Italy
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2025
- [e11]Alejandro Bellogín, Ludovico Boratto, Styliani Kleanthous, Elisabeth Lex, Francesca Maridina Malloci, Mirko Marras:
Advances in Bias and Fairness in Information Retrieval - 5th International Workshop, BIAS 2024, Washington, DC, USA, July 18, 2024, Revised Selected Papers. Communications in Computer and Information Science 2227, Springer 2025, ISBN 978-3-031-71974-5 [contents] - 2024
- [j51]Pablo Sánchez, Alejandro Bellogín, Ludovico Boratto:
Correction to: Bias characterization, assessment, and mitigation in location-based recommender systems. Data Min. Knowl. Discov. 38(6): 4233 (2024) - [j50]Erasmo Purificato, Ludovico Boratto, Ernesto William De Luca:
Toward a Responsible Fairness Analysis: From Binary to Multiclass and Multigroup Assessment in Graph Neural Network-Based User Modeling Tasks. Minds Mach. 34(3): 33 (2024) - [j49]Ludovico Boratto, Daniele Malitesta, Mirko Marras, Giacomo Medda, Cataldo Musto, Erasmo Purificato:
Report on the 1st International Workshop on Graph-Based Approaches in Information Retrieval (IRonGraphs 2024) at ECIR 2024. SIGIR Forum 58(1): 1-4 (2024) - [j48]Ludovico Boratto, Alexander Felfernig, Martin Stettinger, Marko Tkalcic:
Preface on the special issue on group recommender systems. User Model. User Adapt. Interact. 34(3): 483-487 (2024) - [c96]Neda Afreen, Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Francesca Maridina Malloci, Mirko Marras, Andrea Giovanni Martis:
EDGE: A Conversational Interface driven by Large Language Models for Educational Knowledge Graphs Exploration. CIKM 2024: 5159-5163 - [c95]Elizabeth Gómez, David Contreras, Ludovico Boratto, Maria Salamó:
MOReGIn: Multi-Objective Recommendation at the Global and Individual Levels. ECIR (1) 2024: 21-38 - [c94]Ludovico Boratto, Francesco Fabbri, Gianni Fenu, Mirko Marras, Giacomo Medda:
Robustness in Fairness Against Edge-Level Perturbations in GNN-Based Recommendation. ECIR (3) 2024: 38-55 - [c93]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Francesca Maridina Malloci, Mirko Marras:
Explainable Recommender Systems with Knowledge Graphs and Language Models. ECIR (5) 2024: 352-357 - [c92]Ludovico Boratto, Daniele Malitesta, Mirko Marras, Giacomo Medda, Cataldo Musto, Erasmo Purificato:
First International Workshop on Graph-Based Approaches in Information Retrieval (IRonGraphs 2024). ECIR (5) 2024: 415-421 - [c91]Ludovico Boratto, Giulia Cerniglia, Mirko Marras, Alessandra Perniciano, Barbara Pes:
A Cost-Sensitive Meta-learning Strategy for Fair Provider Exposure in Recommendation. ECIR (3) 2024: 440-448 - [c90]Ludovico Boratto, Francesco Fabbri, Gianni Fenu, Mirko Marras, Giacomo Medda:
Comprehensive Assessment of Robustness in Fairness of GNN-based Recommender Systems against Attacks. IIR 2024: 62-65 - [c89]Patrik Dokoupil, Ludovico Boratto, Ladislav Peska:
Comparing User Interfaces for Customizing Multi-Objective Recommender Systems. IntRS@RecSys 2024: 15-28 - [c88]Antonio Ferrara, Marco Valentini, Paolo Masciullo, Antonio De Candia, Davide Abbattista, Riccardo Fusco, Claudio Pomo, Vito Walter Anelli, Giovanni Maria Biancofiore, Ludovico Boratto, Fedelucio Narducci:
DIVAN: Deep-Interest Virality-Aware Network to Exploit Temporal Dynamics in News Recommendation. RecSys Challenge 2024: 12-16 - [c87]Alejandro Ariza-Casabona, Ludovico Boratto, Maria Salamó:
A Comparative Analysis of Text-Based Explainable Recommender Systems. RecSys 2024: 105-115 - [c86]Elizabeth Gómez, David Contreras, Ludovico Boratto, Maria Salamó:
AMBAR: A dataset for Assessing Multiple Beyond-Accuracy Recommenders. RecSys 2024: 137-147 - [c85]Ludovico Boratto, Francesco Fabbri, Gianni Fenu, Mirko Marras, Giacomo Medda:
Fair Augmentation for Graph Collaborative Filtering. RecSys 2024: 158-168 - [c84]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras, Alessandro Soccol:
KGGLM: A Generative Language Model for Generalizable Knowledge Graph Representation Learning in Recommendation. RecSys 2024: 1079-1084 - [c83]Ludovico Boratto, Allegra De Filippo, Elisabeth Lex, Francesco Ricci:
First International Workshop on Recommender Systems for Sustainability and Social Good (RecSoGood 2024). RecSys 2024: 1239-1241 - [c82]Patrik Dokoupil, Ladislav Peska, Ludovico Boratto:
SM-RS: Single- and Multi-Objective Recommendations with Contextual Impressions and Beyond-Accuracy Propensity Scores. SIGIR 2024: 988-995 - [c81]Alex Martinez, Mihnea Tufis, Ludovico Boratto:
Unmasking Privacy: A Reproduction and Evaluation Study of Obfuscation-based Perturbation Techniques for Collaborative Filtering. SIGIR 2024: 1753-1762 - [c80]Guilherme Ramos, Mirko Marras, Ludovico Boratto:
Towards Ethical Item Ranking: A Paradigm Shift from User-Centric to Item-Centric Approaches. SIGIR 2024: 2667-2671 - [c79]Alejandro Bellogín, Ludovico Boratto, Styliani Kleanthous, Elisabeth Lex, Francesca Maridina Malloci, Mirko Marras:
International Workshop on Algorithmic Bias in Search and Recommendation (BIAS). SIGIR 2024: 3033-3035 - [c78]Neda Afreen, Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Francesca Maridina Malloci, Mirko Marras, Andrea Giovanni Martis:
Learner-centered Ontology for Explainable Educational Recommendation. UMAP (Adjunct Publication) 2024 - [c77]Elizabeth Gómez, David Contreras, Maria Salamó, Ludovico Boratto:
Bringing Equity to Coarse and Fine-Grained Provider Groups in Recommender Systems. UMAP 2024: 18-23 - [c76]Patrik Dokoupil, Ludovico Boratto, Ladislav Peska:
User Perceptions of Diversity in Recommender Systems. UMAP 2024: 212-222 - [c75]Erasmo Purificato, Ludovico Boratto, Ernesto William De Luca:
Paradigm Shifts in User Modeling: A Journey from Historical Foundations to Emerging Trends. UMAP (Adjunct Publication) 2024 - [i24]Elizabeth Gómez, David Contreras, Ludovico Boratto, Maria Salamó:
MOReGIn: Multi-Objective Recommendation at the Global and Individual Levels. CoRR abs/2401.12593 (2024) - [i23]Ludovico Boratto, Giulia Cerniglia, Mirko Marras, Alessandra Perniciano, Barbara Pes:
A Cost-Sensitive Meta-Learning Strategy for Fair Provider Exposure in Recommendation. CoRR abs/2401.13566 (2024) - [i22]Ludovico Boratto, Francesco Fabbri, Gianni Fenu, Mirko Marras, Giacomo Medda:
Robustness in Fairness against Edge-level Perturbations in GNN-based Recommendation. CoRR abs/2401.13823 (2024) - [i21]Erasmo Purificato, Ludovico Boratto, Ernesto William De Luca:
User Modeling and User Profiling: A Comprehensive Survey. CoRR abs/2402.09660 (2024) - [i20]Ludovico Boratto, Francesco Fabbri, Gianni Fenu, Mirko Marras, Giacomo Medda:
Fair Augmentation for Graph Collaborative Filtering. CoRR abs/2408.12208 (2024) - [i19]Daniele Malitesta, Giacomo Medda, Erasmo Purificato, Ludovico Boratto, Fragkiskos D. Malliaros, Mirko Marras, Ernesto William De Luca:
How Fair is Your Diffusion Recommender Model? CoRR abs/2409.04339 (2024) - 2023
- [j47]Pablo Sánchez, Alejandro Bellogín, Ludovico Boratto:
Bias characterization, assessment, and mitigation in location-based recommender systems. Data Min. Knowl. Discov. 37(5): 1885-1929 (2023) - [j46]Ludovico Boratto, Gianni Fenu, Mirko Marras, Giacomo Medda:
Practical perspectives of consumer fairness in recommendation. Inf. Process. Manag. 60(2): 103208 (2023) - [j45]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:
Reinforcement recommendation reasoning through knowledge graphs for explanation path quality. Knowl. Based Syst. 260: 110098 (2023) - [c74]Erasmo Purificato, Ludovico Boratto, Ernesto William De Luca:
Recent Advances in Fairness Analysis of User Profiling Approaches in E-Commerce with Graph Neural Networks. DP@AI*IA 2023: 47-56 - [c73]Ernesto William De Luca, Erasmo Purificato, Ludovico Boratto, Stefano Marrone, Carlo Sansone:
First Workshop on User Perspectives in Human-Centred Artificial Intelligence (HCAI4U). CHItaly 2023: 36:1-36:3 - [c72]Ludovico Boratto, Francesco Fabbri, Gianni Fenu, Mirko Marras, Giacomo Medda:
Counterfactual Graph Augmentation for Consumer Unfairness Mitigation in Recommender Systems. CIKM 2023: 3753-3757 - [c71]Erasmo Purificato, Ludovico Boratto, Ernesto William De Luca:
Leveraging Graph Neural Networks for User Profiling: Recent Advances and Open Challenges. CIKM 2023: 5216-5219 - [c70]Giacomo Balloccu, Ludovico Boratto, Christian Cancedda, Gianni Fenu, Mirko Marras:
Knowledge is Power, Understanding is Impact: Utility and Beyond Goals, Explanation Quality, and Fairness in Path Reasoning Recommendation. ECIR (3) 2023: 3-19 - [c69]Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo:
Fourth International Workshop on Algorithmic Bias in Search and Recommendation (Bias 2023). ECIR (3) 2023: 373-376 - [c68]Ludovico Boratto, Gianni Fenu, Mirko Marras, Giacomo Medda:
Consumer Fairness Benchmark in Recommendation. IIR 2023: 60-65 - [c67]Giacomo Balloccu, Ludovico Boratto, Christian Cancedda, Gianni Fenu, Mirko Marras:
Knowledge-aware Recommendations: Exploring the Interplay between Utility, Explanation Quality, and Fairness in Path Reasoning Methods. IIR 2023: 111-116 - [c66]Neda Afreen, Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:
Towards Explainable Educational Recommendation through Path Reasoning Methods. IIR 2023: 131-136 - [c65]Vincenzo Paparella, Vito Walter Anelli, Ludovico Boratto, Tommaso Di Noia:
Reproducibility of Multi-Objective Reinforcement Learning Recommendation: Interplay between Effectiveness and Beyond-Accuracy Perspectives. RecSys 2023: 467-478 - [c64]Alejandro Ariza-Casabona, Maria Salamó, Ludovico Boratto, Gianni Fenu:
Towards Self-Explaining Sequence-Aware Recommendation. RecSys 2023: 904-911 - [c63]Patrik Dokoupil, Ladislav Peska, Ludovico Boratto:
Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations. RecSys 2023: 912-918 - [c62]Patrik Dokoupil, Ladislav Peska, Ludovico Boratto:
Rows or Columns? Minimizing Presentation Bias When Comparing Multiple Recommender Systems. SIGIR 2023: 2354-2358 - [c61]Mohamed Abdelrazek, Erasmo Purificato, Ludovico Boratto, Ernesto William De Luca:
FairUP: A Framework for Fairness Analysis of Graph Neural Network-Based User Profiling Models. SIGIR 2023: 3165-3169 - [c60]Erasmo Purificato, Ludovico Boratto, Ernesto William De Luca:
Tutorial on User Profiling with Graph Neural Networks and Related Beyond-Accuracy Perspectives. UMAP 2023: 309-312 - [e10]Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo:
Advances in Bias and Fairness in Information Retrieval - 4th International Workshop, BIAS 2023, Dublin, Ireland, April 2, 2023, Revised Selected Papers. Communications in Computer and Information Science 1840, Springer 2023, ISBN 978-3-031-37248-3 [contents] - [e9]Ernesto William De Luca, Erasmo Purificato, Ludovico Boratto, Stefano Marrone, Carlo Sansone:
Proceedings of the First Workshop on User Perspectives in Human-Centred Artificial Intelligence (HCAI4U 2023) co-located with the 15th Biannual Conference of the Italian SIGCHI Chapter (CHItaly 2023), Turin, Italy, September 20, 2023. CEUR Workshop Proceedings 3502, CEUR-WS.org 2023 [contents] - [i18]Giacomo Balloccu, Ludovico Boratto, Christian Cancedda, Gianni Fenu, Mirko Marras:
Knowledge is Power, Understanding is Impact: Utility and Beyond Goals, Explanation Quality, and Fairness in Path Reasoning Recommendation. CoRR abs/2301.05944 (2023) - [i17]Giacomo Medda, Francesco Fabbri, Mirko Marras, Ludovico Boratto, Gianni Fenu:
GNNUERS: Fairness Explanation in GNNs for Recommendation via Counterfactual Reasoning. CoRR abs/2304.06182 (2023) - [i16]Patrik Dokoupil, Ladislav Peska, Ludovico Boratto:
Looks Can Be Deceiving: Linking User-Item Interactions and User's Propensity Towards Multi-Objective Recommendations. CoRR abs/2307.00654 (2023) - [i15]Ludovico Boratto, Francesco Fabbri, Gianni Fenu, Mirko Marras, Giacomo Medda:
Counterfactual Graph Augmentation for Consumer Unfairness Mitigation in Recommender Systems. CoRR abs/2308.12083 (2023) - [i14]Giacomo Balloccu, Ludovico Boratto, Christian Cancedda, Gianni Fenu, Mirko Marras:
Faithful Path Language Modelling for Explainable Recommendation over Knowledge Graph. CoRR abs/2310.16452 (2023) - 2022
- [j44]Mirko Marras, Ludovico Boratto, Guilherme Ramos, Gianni Fenu:
Equality of Learning Opportunity via Individual Fairness in Personalized Recommendations. Int. J. Artif. Intell. Educ. 32(3): 636-684 (2022) - [j43]Elizabeth Gómez, Carlos Shui Zhang, Ludovico Boratto, Maria Salamó, Guilherme Ramos:
Enabling cross-continent provider fairness in educational recommender systems. Future Gener. Comput. Syst. 127: 435-447 (2022) - [j42]Elizabeth Gómez, Ludovico Boratto, Maria Salamó:
Provider fairness across continents in collaborative recommender systems. Inf. Process. Manag. 59(1): 102719 (2022) - [j41]Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo:
Guest editorial of the IPM special issue on algorithmic bias and fairness in search and recommendation. Inf. Process. Manag. 59(1): 102791 (2022) - [j40]Guilherme Ramos, Ludovico Boratto, Mirko Marras:
Robust reputation independence in ranking systems for multiple sensitive attributes. Mach. Learn. 111(10): 3769-3796 (2022) - [j39]Alejandro Bellogín, Ludovico Boratto, Olga C. Santos, Liliana Ardissono, Bart P. Knijnenburg:
ACM UMAP 2022 report: 30th ACM conference on user modeling, adaptation and personalization. SIGWEB Newsl. 2022(Autumn): 1:1-1:5 (2022) - [j38]Alejandro Bellogín, Ludovico Boratto, Federica Cena:
33rd ACM conference on hypertext and social media. SIGWEB Newsl. 2022(Autumn): 2:1-2:7 (2022) - [j37]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:
XRecSys: A framework for path reasoning quality in explainable recommendation. Softw. Impacts 14: 100404 (2022) - [j36]João Saúde, Guilherme Ramos, Ludovico Boratto, Carlos Caleiro:
A Robust Reputation-Based Group Ranking System and Its Resistance to Bribery. ACM Trans. Knowl. Discov. Data 16(2): 26:1-26:35 (2022) - [j35]Ludovico Boratto, Salvatore Carta, Walid Iguider, Fabrizio Mulas, Paolo Pilloni:
Fair performance-based user recommendation in eCoaching systems. User Model. User Adapt. Interact. 32(5): 839-881 (2022) - [c59]Joaquin Dario Silveira, Maria Salamó, Ludovico Boratto:
Enabling Reproducibility in Group Recommender Systems. CCIA 2022: 115-124 - [c58]Erasmo Purificato, Ludovico Boratto, Ernesto William De Luca:
Do Graph Neural Networks Build Fair User Models? Assessing Disparate Impact and Mistreatment in Behavioural User Profiling. CIKM 2022: 4399-4403 - [c57]Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo:
Third International Workshop on Algorithmic Bias in Search and Recommendation (BIAS@ECIR2022). ECIR (2) 2022: 547-551 - [c56]Ludovico Boratto, Gianni Fenu, Mirko Marras, Giacomo Medda:
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations. ECIR (1) 2022: 552-566 - [c55]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:
Recency, Popularity, and Diversity of Explanations in Knowledge-based Recommendation. IIR 2022 - [c54]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:
Hands on Explainable Recommender Systems with Knowledge Graphs. RecSys 2022: 710-713 - [c53]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:
Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity of Explanations. SIGIR 2022: 646-656 - [c52]Mirko Marras, Ludovico Boratto, Guilherme Ramos, Gianni Fenu:
Regulating Group Exposure for Item Providers in Recommendation. SIGIR 2022: 1839-1843 - [e8]Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo:
Advances in Bias and Fairness in Information Retrieval - Third International Workshop, BIAS 2022, Stavanger, Norway, April 10, 2022, Revised Selected Papers. Communications in Computer and Information Science 1610, Springer 2022, ISBN 978-3-031-09315-9 [contents] - [e7]Alejandro Bellogín, Ludovico Boratto, Federica Cena:
HT '22: 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June 2022- 1 July 2022. ACM 2022, ISBN 978-1-4503-9233-4 [contents] - [e6]Alejandro Bellogín, Ludovico Boratto, Olga C. Santos, Liliana Ardissono, Bart P. Knijnenburg:
UMAP '22: 30th ACM Conference on User Modeling, Adaptation and Personalization, Barcelona, Spain, July 4 - 7, 2022. ACM 2022, ISBN 978-1-4503-9207-5 [contents] - [i13]Ludovico Boratto, Gianni Fenu, Mirko Marras, Giacomo Medda:
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations. CoRR abs/2201.08614 (2022) - [i12]Guilherme Ramos, Ludovico Boratto, Mirko Marras:
Robust Reputation Independence in Ranking Systems for Multiple Sensitive Attributes. CoRR abs/2203.16663 (2022) - [i11]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:
Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity of Explanations. CoRR abs/2204.11241 (2022) - [i10]Mirko Marras, Ludovico Boratto, Guilherme Ramos, Gianni Fenu:
Regulating Group Exposure for Item Providers in Recommendation. CoRR abs/2204.11243 (2022) - [i9]Giacomo Balloccu, Ludovico Boratto, Gianni Fenu, Mirko Marras:
Reinforcement Recommendation Reasoning through Knowledge Graphs for Explanation Path Quality. CoRR abs/2209.04954 (2022) - 2021
- [j34]Ludovico Boratto, Gianni Fenu, Mirko Marras:
Connecting user and item perspectives in popularity debiasing for collaborative recommendation. Inf. Process. Manag. 58(1): 102387 (2021) - [j33]Mihnea Tufis, Ludovico Boratto:
Toward a Complete Data Valuation Process. Challenges of Personal Data. ACM J. Data Inf. Qual. 13(4): 20:1-20:7 (2021) - [j32]David Contreras, Maria Salamó, Ludovico Boratto:
Integrating Collaboration and Leadership in Conversational Group Recommender Systems. ACM Trans. Inf. Syst. 39(4): 41:1-41:32 (2021) - [j31]Ludovico Boratto, Gianni Fenu, Mirko Marras:
Interplay between upsampling and regularization for provider fairness in recommender systems. User Model. User Adapt. Interact. 31(3): 421-455 (2021) - [c51]Luca Piras, Ludovico Boratto, Guilherme Ramos:
Evaluating the Prediction Bias Induced by Label Imbalance in Multi-label Classification. CIKM 2021: 3368-3372 - [c50]Guilherme Ramos, Ludovico Boratto, Mirko Marras:
Reputation Equity in Ranking Systems. CIKM 2021: 3378-3382 - [c49]Elizabeth Gómez, Ludovico Boratto, Maria Salamó:
Disparate Impact in Item Recommendation: A Case of Geographic Imbalance. ECIR (1) 2021: 190-206 - [c48]Alejandro Ariza, Francesco Fabbri, Ludovico Boratto, Maria Salamó:
From the Beatles to Billie Eilish: Connecting Provider Representativeness and Exposure in Session-Based Recommender Systems. ECIR (2) 2021: 201-208 - [c47]Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo:
Second International Workshop on Algorithmic Bias in Search and Recommendation (BIAS@ECIR2021). ECIR (2) 2021: 697-700 - [c46]Ludovico Boratto, Mirko Marras:
Countering Bias in Personalized Rankings : From Data Engineering to Algorithm Development. ICDE 2021: 2362-2364 - [c45]Cristian Consonni, Silvia Basile, Matteo Manca, Ludovico Boratto, André Freitas, Tatiana Kovacikova, Ghadir Pourhashem, Yannick Cornet:
What's Your Value of Travel Time? Collecting Traveler-Centered Mobility Data via Crowdsourcing. ICWSM 2021: 961-970 - [c44]Ludovico Boratto, Gianni Fenu, Mirko Marras:
Combining Mitigation Treatments against Biases in Personalized Rankings: Use Case on Item Popularity. IIR 2021 - [c43]Elizabeth Gómez, Carlos Shui Zhang, Ludovico Boratto, Maria Salamó, Mirko Marras:
The Winner Takes it All: Geographic Imbalance and Provider (Un)fairness in Educational Recommender Systems. SIGIR 2021: 1808-1812 - [c42]Ludovico Boratto, Mirko Marras:
Advances in Bias-aware Recommendation on the Web. WSDM 2021: 1147-1149 - [e5]Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo:
Advances in Bias and Fairness in Information Retrieval - Second International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2021, Lucca, Italy, April 1, 2021, Proceedings. Communications in Computer and Information Science 1418, Springer 2021, ISBN 978-3-030-78817-9 [contents] - [i8]Cristian Consonni, Silvia Basile, Matteo Manca, Ludovico Boratto, André Freitas, Tatiana Kovacikova, Ghadir Pourhashem, Yannick Cornet:
What's Your Value of Travel Time? Collecting Traveler-Centered Mobility Data via Crowdsourcing. CoRR abs/2104.05809 (2021) - 2020
- [j30]Marc Güell, Maria Salamó, David Contreras, Ludovico Boratto:
Integrating a cognitive assistant within a critique-based recommender system. Cogn. Syst. Res. 64: 1-14 (2020) - [j29]Ludovico Boratto, Matteo Manca, Giuseppe Lugano, Marián Gogola:
Characterizing user behavior in journey planning. Computing 102(5): 1245-1258 (2020) - [j28]Guilherme Ramos, Ludovico Boratto, Carlos Caleiro:
On the negative impact of social influence in recommender systems: A study of bribery in collaborative hybrid algorithms. Inf. Process. Manag. 57(2): 102058 (2020) - [j27]Ludovico Boratto, Eloisa Vargiu:
Data-driven user behavioral modeling: from real-world behavior to knowledge, algorithms, and systems. J. Intell. Inf. Syst. 54(1): 1-4 (2020) - [j26]Sérgio Nunes, Suzanne Little, Sumit Bhatia, Ludovico Boratto, Guillaume Cabanac, Ricardo Campos, Francisco M. Couto, Stefano Faralli, Ingo Frommholz, Adam Jatowt, Alípio Jorge, Mirko Marras, Philipp Mayr, Giovanni Stilo:
ECIR 2020 workshops: assessing the impact of going online. SIGIR Forum 54(1): 7:1-7:11 (2020) - [j25]Ludovico Boratto, Stefano Faralli, Mirko Marras, Giovanni Stilo:
Report on the international workshop on algorithmic bias in search and recommendation (Bias 2020). SIGIR Forum 54(1): 9:1-9:5 (2020) - [j24]Ludovico Boratto, Salvatore Carta, Federico Ibba, Fabrizio Mulas, Paolo Pilloni:
Modeling real-time data and contextual information from workouts in eCoaching platforms to predict users' sharing behavior on Facebook. User Model. User Adapt. Interact. 30(3): 395-411 (2020) - [c41]Ludovico Boratto, Mirko Marras, Stefano Faralli, Giovanni Stilo:
International Workshop on Algorithmic Bias in Search and Recommendation (Bias 2020). ECIR (2) 2020: 637-640 - [c40]