default search action
A. J. Feelders
Person information
- affiliation: Utrecht University, Netherlands
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i6]Laurens P. Stoop, Erik Duijm, A. J. Feelders, Machteld van den Broek:
Detection of Critical Events in Renewable Energy Production Time Series. CoRR abs/2401.17814 (2024) - [i5]Michiel P. Bron, Peter G. M. van der Heijden, A. J. Feelders, Arno P. J. M. Siebes:
Using Chao's Estimator as a Stopping Criterion for Technology-Assisted Review. CoRR abs/2404.01176 (2024) - 2023
- [c48]Marcel Robeer, Floris Bex, Ad Feelders, Henry Prakken:
Explaining Model Behavior with Global Causal Analysis. xAI (1) 2023: 299-323 - 2022
- [c47]Jurian Baas, Leon van Wissen, Jirsi Reinders, Mehdi M. Dastani, A. J. Feelders:
Adding Domain Knowledge to Improve Entity Resolution in 17th and 18th Century Amsterdam Archival Records. SEMANTiCS 2022: 90-104 - 2021
- [c46]Laurens P. Stoop, Erik Duijm, Ad Feelders, Machteld van den Broek:
Detection of Critical Events in Renewable Energy Production Time Series. AALTD@ECML/PKDD 2021: 104-119 - [c45]Juriaan Baas, Mehdi M. Dastani, Ad Feelders:
Entity Matching in Digital Humanities Knowledge Graphs. CHR 2021: 1-15 - [c44]Marcel Robeer, Floris Bex, Ad Feelders:
Generating Realistic Natural Language Counterfactuals. EMNLP (Findings) 2021: 3611-3625 - [c43]Jurian Baas, Mehdi Dastani, A. J. Feelders:
Exploiting Transitivity for Entity Matching. ESWC (Satellite Events) 2021: 109-114 - [i4]Jurian Baas, Mehdi Dastani, Ad Feelders:
Exploiting Transitivity Constraints for Entity Matching in Knowledge Graphs. CoRR abs/2104.12589 (2021) - 2020
- [c42]Jurian Baas, Mehdi Dastani, Ad Feelders:
Tailored Graph Embeddings for Entity Alignment on Historical Data. iiWAS 2020: 125-133 - [c41]Luuk van de Wiel, Daniel M. van Es, A. J. Feelders:
Real-Time Outlier Detection in Time Series Data of Water Sensors. AALTD@PKDD/ECML 2020: 155-170 - [e3]Michael R. Berthold, Ad Feelders, Georg Krempl:
Advances in Intelligent Data Analysis XVIII - 18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020, Proceedings. Lecture Notes in Computer Science 12080, Springer 2020, ISBN 978-3-030-44583-6 [contents]
2010 – 2019
- 2019
- [c40]Bart J. van der Lugt, Ad Feelders:
Conditional Forecasting of Water Level Time Series with RNNs. AALTD@PKDD/ECML 2019: 55-71 - 2018
- [j14]Ron Triepels, Hennie Daniels, Ad Feelders:
Data-driven fraud detection in international shipping. Expert Syst. Appl. 99: 193-202 (2018) - 2016
- [j13]Wouter Duivesteijn, Ad Feelders, Arno J. Knobbe:
Exceptional Model Mining - Supervised descriptive local pattern mining with complex target concepts. Data Min. Knowl. Discov. 30(1): 47-98 (2016) - [j12]Andrés R. Masegosa, A. J. Feelders, Linda C. van der Gaag:
Learning from incomplete data in Bayesian networks with qualitative influences. Int. J. Approx. Reason. 69: 18-34 (2016) - [c39]Ad Feelders, Tijmen Kolkman:
Exploiting monotonicity constraints to reduce label noise: An experimental evaluation. IJCNN 2016: 2148-2155 - 2015
- [j11]Michael Mampaey, Siegfried Nijssen, Ad Feelders, Rob M. Konijn, Arno J. Knobbe:
Efficient algorithms for finding optimal binary features in numeric and nominal labeled data. Knowl. Inf. Syst. 42(2): 465-492 (2015) - [c38]Ron Triepels, Ad Feelders, Hennie A. M. Daniels:
Uncovering Document Fraud in Maritime Freight Transport Based on Probabilistic Classification. CISIM 2015: 282-293 - [c37]Robert Kreuzer, Jurriaan Hage, Ad Feelders:
A Quantitative Comparison of Semantic Web Page Segmentation Approaches. ICWE 2015: 374-391 - [c36]Thomas E. Krak, Ad Feelders:
Exceptional Model Mining with Tree-Constrained Gradient Ascent. SDM 2015: 487-495 - 2014
- [c35]Steven P. D. Woudenberg, Linda C. van der Gaag, Ad Feelders, Armin R. W. Elbers:
Real-time Adaptive Problem Detection in Poultry. ECAI 2014: 1217-1218 - [c34]Steven P. D. Woudenberg, Linda C. van der Gaag, Ad Feelders, Armin R. W. Elbers:
Real-Time Adaptive Residual Calculation for Detecting Trend Deviations in Systems with Natural Variability. IDA 2014: 380-392 - [c33]Pieter Soons, Ad Feelders:
Exploiting Monotonicity Constraints in Active Learning for Ordinal Classification. SDM 2014: 659-667 - [e2]Linda C. van der Gaag, A. J. Feelders:
Probabilistic Graphical Models - 7th European Workshop, PGM 2014, Utrecht, The Netherlands, September 17-19, 2014. Proceedings. Lecture Notes in Computer Science 8754, Springer 2014, ISBN 978-3-319-11432-3 [contents] - 2012
- [c32]Michael Mampaey, Siegfried Nijssen, Ad Feelders, Arno J. Knobbe:
Efficient Algorithms for Finding Richer Subgroup Descriptions in Numeric and Nominal Data. ICDM 2012: 499-508 - [c31]Wouter Duivesteijn, Ad Feelders, Arno J. Knobbe:
Different slopes for different folks: mining for exceptional regression models with cook's distance. KDD 2012: 868-876 - [c30]Diederik M. Roijers, Johan Jeuring, Ad Feelders:
Probability estimation and a competence model for rule based e-tutoring systems. LAK 2012: 255-258 - [c29]Nicola Barile, Ad Feelders:
Active Learning with Monotonicity Constraints. SDM 2012: 756-767 - [i3]Ad Feelders:
A new parameter Learning Method for Bayesian Networks with Qualitative Influences. CoRR abs/1206.5245 (2012) - [i2]Ad Feelders, Linda C. van der Gaag:
Learning Bayesian Network Parameters with Prior Knowledge about Context-Specific Qualitative Influences. CoRR abs/1207.1387 (2012) - [i1]Linda C. van der Gaag, Hans L. Bodlaender, Ad Feelders:
Monotonicity in Bayesian Networks. CoRR abs/1207.4160 (2012) - 2011
- [c28]Nicola Barile, Ad Feelders:
Monotone Instance Ranking with mira. Discovery Science 2011: 31-45 - [c27]Barbara F. I. Pieters, Linda C. van der Gaag, Ad Feelders:
When Learning Naive Bayesian Classifiers Preserves Monotonicity. ECSQARU 2011: 422-433 - [c26]Luite Stegeman, Ad Feelders:
On Generating All Optimal Monotone Classifications. ICDM 2011: 685-694 - 2010
- [c25]Wouter Duivesteijn, Arno J. Knobbe, Ad Feelders, Matthijs van Leeuwen:
Subgroup Discovery Meets Bayesian Networks -- An Exceptional Model Mining Approach. ICDM 2010: 158-167 - [c24]Ad Feelders:
Monotone Relabeling in Ordinal Classification. ICDM 2010: 803-808
2000 – 2009
- 2009
- [c23]Rémon van de Kamp, Ad Feelders, Nicola Barile:
Isotonic Classification Trees. IDA 2009: 405-416 - [c22]Linda C. van der Gaag, Silja Renooij, Ad Feelders, Arend de Groote, Marinus J. C. Eijkemans, Frank J. Broekmans, Bart C. J. M. Fauser:
Aligning Bayesian Network Classifiers with Medical Contexts. MLDM 2009: 787-801 - 2008
- [j10]Jeroen De Knijf, Ad Feelders:
An Experimental Comparison of Different Inclusion Relations in Frequent Tree Mining. Fundam. Informaticae 89(1): 1-22 (2008) - [c21]Nicola Barile, Ad Feelders:
Nonparametric Monotone Classification with MOCA. ICDM 2008: 731-736 - [c20]Dennis Leman, Ad Feelders, Arno J. Knobbe:
Exceptional Model Mining. ECML/PKDD (2) 2008: 1-16 - [c19]Wouter Duivesteijn, Ad Feelders:
Nearest Neighbour Classification with Monotonicity Constraints. ECML/PKDD (1) 2008: 301-316 - 2007
- [c18]A. J. Feelders, Robert van Straalen:
Parameter Learning for Bayesian Networks with Strict Qualitative Influences. IDA 2007: 48-58 - [c17]Ad Feelders:
A new parameter Learning Method for Bayesian Networks with Qualitative Influences. UAI 2007: 117-124 - 2006
- [j9]A. J. Feelders, Linda C. van der Gaag:
Learning Bayesian network parameters under order constraints. Int. J. Approx. Reason. 42(1-2): 37-53 (2006) - [c16]A. J. Feelders, Jevgenijs Ivanovs:
Discriminative Scoring of Bayesian Network Classifiers: a Comparative Study. Probabilistic Graphical Models 2006: 75-82 - 2005
- [j8]Michael Egmont-Petersen, A. J. Feelders, Bart Baesens:
Confidence intervals for probabilistic network classifiers. Comput. Stat. Data Anal. 49(4): 998-1019 (2005) - [c15]Carsten Riggelsen, Ad Feelders:
Learning Bayesian Network Models from Incomplete Data using Importance Sampling. AISTATS 2005: 301-308 - [c14]Arno Siebes, Muhammad Subianto, A. J. Feelders:
Instability of Classifiers on Categorical Data. ICDM 2005: 769-772 - [c13]Eveline M. Helsper, Linda C. van der Gaag, A. J. Feelders, Willie Loeffen, Petra L. Geenen, Armin Elbers:
Bringing order into bayesian-network construction. K-CAP 2005: 121-128 - [c12]A. J. Feelders, Linda C. van der Gaag:
Learning Bayesian Network Parameters with Prior Knowledge about Context-Specific Qualitative Influences. UAI 2005: 193-200 - [e1]A. Fazel Famili, Joost N. Kok, José María Peña Sánchez, Arno Siebes, A. J. Feelders:
Advances in Intelligent Data Analysis VI, 6th International Symposium on Intelligent Data Analysis, IDA 2005, Madrid, Spain, September 8-10, 2005, Proceedings. Lecture Notes in Computer Science 3646, Springer 2005, ISBN 3-540-28795-7 [contents] - 2004
- [c11]Linda C. van der Gaag, Hans L. Bodlaender, A. J. Feelders:
Monotonicity in Bayesian Networks. UAI 2004: 569-576 - 2003
- [c10]A. J. Feelders, Martijn Pardoel:
Pruning for Monotone Classification Trees. IDA 2003: 1-12 - 2002
- [j7]Rob Potharst, A. J. Feelders:
Classification trees for problems with monotonicity constraints. SIGKDD Explor. 4(1): 1-10 (2002) - 2001
- [j6]A. J. Feelders, Hennie A. M. Daniels:
A general model for automated business diagnosis. Eur. J. Oper. Res. 130(3): 623-637 (2001) - [c9]Robert Castelo, A. J. Feelders, Arno Siebes:
MAMBO: Discovering Association Rules Based on Conditional Independencies. IDA 2001: 289-298 - 2000
- [j5]A. J. Feelders, Hennie A. M. Daniels, Marcel Holsheimer:
Methodological and practical aspects of data mining. Inf. Manag. 37(5): 271-281 (2000) - [j4]A. J. Feelders:
Credit scoring and reject inference with mixture models. Intell. Syst. Account. Finance Manag. 9(1): 1-8 (2000) - [c8]A. J. Feelders:
Prior Knowledge in Economic Applications of Data Mining. PKDD 2000: 395-400
1990 – 1999
- 1999
- [j3]A. J. Feelders:
Credit scoring and reject inference with mixture models. Intell. Syst. Account. Finance Manag. 8(4): 271-279 (1999) - [j2]A. J. Feelders:
Discussion on the paper by Friedman and Fisher. Stat. Comput. 9(2): 147-148 (1999) - [c7]A. J. Feelders:
Handling Missing Data in Trees: Surrogate Splits or Statistical Imputation. PKDD 1999: 329-334 - 1998
- [c6]A. J. Feelders, Soong Chang, Geoffrey J. McLachlan:
Mining in the Presence of Selectivity Bias and its Application to Reject Inference. KDD 1998: 199-203 - [c5]Jack P. C. Kleijnen, A. J. Feelders, Russell C. H. Cheng:
Bootstrapping and Validation of Metamodels in Simulation. WSC 1998: 701-705 - 1996
- [c4]A. J. Feelders:
Data mining and related techniques. EUROSIM 1996: 521-527 - [c3]A. J. Feelders:
Learning from Biased Data Using Mixture Models. KDD 1996: 102-107 - 1995
- [c2]A. J. Feelders, W. J. H. Verkooijen:
On the Statistical Comparison of Inductive Learning Methods. AISTATS 1995: 271-279 - [c1]A. J. Feelders, A. J. F. le Loux, J. W. van't Zand:
Data Mining for Loan Evaluation at ABN AMRO: A Case Study. KDD 1995: 106-111 - 1992
- [j1]Hennie A. M. Daniels, Ad Feelders:
Explanation and diagnosis in business assessment. IEEE Trans. Syst. Man Cybern. 22(2): 397-402 (1992)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-05 21:19 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint