default search action
Wouter Duivesteijn
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c32]Iko Vloothuis, Wouter Duivesteijn:
RMI-RRG: A Soft Protocol to Postulate Monotonicity Constraints for Tabular Datasets. IDA (1) 2024: 16-27 - [c31]Rianne Margaretha Schouten, Wouter Duivesteijn, Pekka Räsänen, Jacob M. Paul, Mykola Pechenizkiy:
Exceptional Subitizing Patterns: Exploring Mathematical Abilities of Finnish Primary School Children with Piecewise Linear Regression. ECML/PKDD (10) 2024: 66-82 - 2022
- [j10]Rianne Margaretha Schouten, Marcos L. P. Bueno, Wouter Duivesteijn, Mykola Pechenizkiy:
Mining sequences with exceptional transition behaviour of varying order using quality measures based on information-theoretic scoring functions. Data Min. Knowl. Discov. 36(1): 379-413 (2022) - [c30]Ruben Franciscus Adrianus Verhaegh, Jacco Johannes Egbert Kiezebrink, Frank Nusteling, Arnaud Wander André Rio, Márton Bendegúz Bendicsek, Wouter Duivesteijn, Rianne Margaretha Schouten:
A Clustering-Inspired Quality Measure for Exceptional Preferences Mining - Design Choices and Consequences. DS 2022: 429-444 - [c29]Joost F. van der Haar, Sander C. Nagelkerken, Igor G. Smit, Kjell van Straaten, Janneke A. Tack, Rianne Margaretha Schouten, Wouter Duivesteijn:
Efficient Subgroup Discovery Through Auto-Encoding. IDA 2022: 327-340 - [c28]Rianne Margaretha Schouten, Wouter Duivesteijn, Mykola Pechenizkiy:
Exceptional Model Mining for Repeated Cross-Sectional Data (EMM-RCS). SDM 2022: 585-593 - 2021
- [j9]Xin Du, Lei Sun, Wouter Duivesteijn, Alexander G. Nikolaev, Mykola Pechenizkiy:
Adversarial balancing-based representation learning for causal effect inference with observational data. Data Min. Knowl. Discov. 35(4): 1713-1738 (2021) - [c27]Wouter Duivesteijn, Thomas C. van Dijk:
Exceptional Gestalt Mining: Combining Magic Cards to Make Complex Coalitions Thrive. MLSA@PKDD/ECML 2021: 191-204 - [i7]Xin Du, Subramanian Ramamoorthy, Wouter Duivesteijn, Jin Tian, Mykola Pechenizkiy:
Beyond Discriminant Patterns: On the Robustness of Decision Rule Ensembles. CoRR abs/2109.10432 (2021) - 2020
- [j8]José María Luna, Mykola Pechenizkiy, Wouter Duivesteijn, Sebastián Ventura:
Exceptional in so Many Ways - Discovering Descriptors That Display Exceptional Behavior on Contrasting Scenarios. IEEE Access 8: 200982-200994 (2020) - [j7]Xin Du, Yulong Pei, Wouter Duivesteijn, Mykola Pechenizkiy:
Exceptional spatio-temporal behavior mining through Bayesian non-parametric modeling. Data Min. Knowl. Discov. 34(5): 1267-1290 (2020) - [j6]Wouter Duivesteijn, Sibylle Hess, Xin Du:
How to cheat the page limit. WIREs Data Mining Knowl. Discov. 10(3) (2020) - [c26]Xin Du, Yulong Pei, Wouter Duivesteijn, Mykola Pechenizkiy:
Fairness in Network Representation by Latent Structural Heterogeneity in Observational Data. AAAI 2020: 3809-3816 - [c25]Youri Soons, Remco M. Dijkman, Maurice Jilderda, Wouter Duivesteijn:
Predicting Remaining Useful Life with Similarity-Based Priors. IDA 2020: 483-495 - [i6]Sibylle Hess, Wouter Duivesteijn, Decebal Constantin Mocanu:
Softmax-based Classification is k-means Clustering: Formal Proof, Consequences for Adversarial Attacks, and Improvement through Centroid Based Tailoring. CoRR abs/2001.01987 (2020)
2010 – 2019
- 2019
- [c24]Sibylle Hess, Wouter Duivesteijn, Philipp Honysz, Katharina Morik:
The SpectACl of Nonconvex Clustering: A Spectral Approach to Density-Based Clustering. AAAI 2019: 3788-3795 - [c23]Adnene Belfodil, Wouter Duivesteijn, Marc Plantevit, Sylvie Cazalens, Philippe Lamarre:
DEvIANT: Discovering Significant Exceptional (Dis-)Agreement Within Groups. ECML/PKDD (1) 2019: 3-20 - [c22]Sibylle Hess, Wouter Duivesteijn:
k Is the Magic Number - Inferring the Number of Clusters Through Nonparametric Concentration Inequalities. ECML/PKDD (1) 2019: 257-273 - [e2]Martin Atzmueller, Wouter Duivesteijn:
Artificial Intelligence - 30th Benelux Conference, BNAIC 2018, 's-Hertogenbosch, The Netherlands, November 8-9, 2018, Revised Selected Papers. Communications in Computer and Information Science 1021, Springer 2019, ISBN 978-3-030-31977-9 [contents] - [i5]Xin Du, Lei Sun, Wouter Duivesteijn, Alexander G. Nikolaev, Mykola Pechenizkiy:
Adversarial Balancing-based Representation Learning for Causal Effect Inference with Observational Data. CoRR abs/1904.13335 (2019) - [i4]Sibylle Hess, Wouter Duivesteijn, Philipp Honysz, Katharina Morik:
The SpectACl of Nonconvex Clustering: A Spectral Approach to Density-Based Clustering. CoRR abs/1907.00680 (2019) - [i3]Sibylle Hess, Wouter Duivesteijn:
k is the Magic Number - Inferring the Number of Clusters Through Nonparametric Concentration Inequalities. CoRR abs/1907.02343 (2019) - 2018
- [j5]Cláudio Rebelo de Sá, Wouter Duivesteijn, Paulo J. Azevedo, Alípio Mário Jorge, Carlos Soares, Arno J. Knobbe:
Discovering a taste for the unusual: exceptional models for preference mining. Mach. Learn. 107(11): 1775-1807 (2018) - [c21]Xin Du, Wouter Duivesteijn, Mykola Pechenizkiy:
ELBA: Exceptional Learning Behavior Analysis. EDM 2018 - [c20]Jefrey Lijffijt, Bo Kang, Wouter Duivesteijn, Kai Puolamäki, Emilia Oikarinen, Tijl De Bie:
Subjectively Interesting Subgroup Discovery on Real-Valued Targets. ICDE 2018: 1352-1355 - [c19]Simon van der Zon, Wouter Duivesteijn, Werner van Ipenburg, Jan Veldsink, Mykola Pechenizkiy:
ICIE 1.0: A Novel Tool for Interactive Contextual Interaction Explanations. MIDAS/PAP@PKDD/ECML 2018: 81-94 - [e1]Wouter Duivesteijn, Arno Siebes, Antti Ukkonen:
Advances in Intelligent Data Analysis XVII - 17th International Symposium, IDA 2018, 's-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings. Lecture Notes in Computer Science 11191, Springer 2018, ISBN 978-3-030-01767-5 [contents] - [i2]Oren Zeev-Ben-Mordehai, Wouter Duivesteijn, Mykola Pechenizkiy:
Controversy Rules - Discovering Regions Where Classifiers (Dis-)Agree Exceptionally. CoRR abs/1808.07243 (2018) - 2017
- [j4]Lennart Downar, Wouter Duivesteijn:
Exceptionally monotone models - the rank correlation model class for Exceptional Model Mining. Knowl. Inf. Syst. 51(2): 369-394 (2017) - [c18]Simon van der Zon, Oren Zeev-Ben-Mordehai, Tom Vrijdag, Werner van Ipenburg, Wouter Duivesteijn, Jan Veldsink, Mykola Pechenizkiy:
BoostEMM - Transparent Boosting using Exceptional Model Mining. MIDAS@PKDD/ECML 2017: 5-16 - [c17]Wouter Duivesteijn, Tara Farzami, Thijs Putman, Evertjan Peer, Hilde J. P. Weerts, Jasper N. Adegeest, Gerson Foks, Mykola Pechenizkiy:
Have It Both Ways - From A/B Testing to A&B Testing with Exceptional Model Mining. ECML/PKDD (3) 2017: 114-126 - [i1]Jefrey Lijffijt, Bo Kang, Wouter Duivesteijn, Kai Puolamäki, Emilia Oikarinen, Tijl De Bie:
Subjectively Interesting Subgroup Discovery on Real-valued Targets. CoRR abs/1710.04521 (2017) - 2016
- [j3]Wouter Duivesteijn, Ad Feelders, Arno J. Knobbe:
Exceptional Model Mining - Supervised descriptive local pattern mining with complex target concepts. Data Min. Knowl. Discov. 30(1): 47-98 (2016) - [j2]Christian Pölitz, Wouter Duivesteijn, Katharina Morik:
Interpretable domain adaptation via optimization over the Stiefel manifold. Mach. Learn. 104(2-3): 315-336 (2016) - [c16]Wouter Duivesteijn, Marvin Meeng:
SCHEP - A Geometric Quality Measure for Regression Rule Sets, Gauging Ranking Consistency Throughout the Real-Valued Target Space. Solving Large Scale Learning Tasks 2016: 272-285 - [c15]Cláudio Rebelo de Sá, Wouter Duivesteijn, Carlos Soares, Arno J. Knobbe:
Exceptional Preferences Mining. DS 2016: 3-18 - 2015
- [j1]Rob M. Konijn, Wouter Duivesteijn, Marvin Meeng, Arno J. Knobbe:
Cost-based quality measures in subgroup discovery. J. Intell. Inf. Syst. 45(3): 337-355 (2015) - [c14]Lennart Downar, Wouter Duivesteijn:
Exceptionally Monotone Models - The Rank Correlation Model Class for Exceptional Model Mining. ICDM 2015: 111-120 - [c13]Wouter Duivesteijn, Julia Thaele:
Understanding Where Your Classifier Does (Not) Work. ECML/PKDD (3) 2015: 250-253 - 2014
- [c12]Wouter Duivesteijn, Julia Thaele:
Understanding Where Your Classifier Does (Not) Work - The SCaPE Model Class for EMM. ICDM 2014: 809-814 - [c11]Jouke Witteveen, Wouter Duivesteijn, Arno J. Knobbe, Peter Grünwald:
RealKrimp - Finding Hyperintervals that Compress with MDL for Real-Valued Data. IDA 2014: 368-379 - [c10]Marvin Meeng, Wouter Duivesteijn, Arno J. Knobbe:
ROCsearch - An ROC-Guided Search Strategy for Subgroup Discovery. LWA 2014: 180 - [c9]Marvin Meeng, Wouter Duivesteijn, Arno J. Knobbe:
ROCsearch - An ROC-guided Search Strategy for Subgroup Discovery. SDM 2014: 704-712 - 2013
- [c8]Rob M. Konijn, Wouter Duivesteijn, Wojtek Kowalczyk, Arno J. Knobbe:
Discovering Local Subgroups, with an Application to Fraud Detection. PAKDD (1) 2013: 1-12 - [c7]Rob M. Konijn, Wouter Duivesteijn, Marvin Meeng, Arno J. Knobbe:
Cost-Based Quality Measures in Subgroup Discovery. PAKDD Workshops 2013: 404-415 - 2012
- [c6]Geraldina Ribeiro, Wouter Duivesteijn, Carlos Soares, Arno J. Knobbe:
Multilayer Perceptron for Label Ranking. ICANN (2) 2012: 25-32 - [c5]Wouter Duivesteijn, Eneldo Loza Mencía, Johannes Fürnkranz, Arno J. Knobbe:
Multi-label LeGo - Enhancing Multi-label Classifiers with Local Patterns. IDA 2012: 114-125 - [c4]Wouter Duivesteijn, Ad Feelders, Arno J. Knobbe:
Different slopes for different folks: mining for exceptional regression models with cook's distance. KDD 2012: 868-876 - 2011
- [c3]Wouter Duivesteijn, Arno J. Knobbe:
Exploiting False Discoveries - Statistical Validation of Patterns and Quality Measures in Subgroup Discovery. ICDM 2011: 151-160 - 2010
- [c2]Wouter Duivesteijn, Arno J. Knobbe, Ad Feelders, Matthijs van Leeuwen:
Subgroup Discovery Meets Bayesian Networks -- An Exceptional Model Mining Approach. ICDM 2010: 158-167
2000 – 2009
- 2008
- [c1]Wouter Duivesteijn, Ad Feelders:
Nearest Neighbour Classification with Monotonicity Constraints. ECML/PKDD (1) 2008: 301-316
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:12 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint