


Остановите войну!
for scientists:


default search action
Randall Balestriero
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2022
- [j3]Ángel Bueno Rodríguez
, Randall Balestriero
, Silvio De Angelis
, M. Carmen Benítez
, Luciano Zuccarello
, Richard G. Baraniuk
, Jesús M. Ibáñez
, Maarten V. de Hoop:
Recurrent Scattering Network Detects Metastable Behavior in Polyphonic Seismo-Volcanic Signals for Volcano Eruption Forecasting. IEEE Trans. Geosci. Remote. Sens. 60: 1-23 (2022) - [c18]Ahmed Imtiaz Humayun, Randall Balestriero, Richard G. Baraniuk:
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values. CVPR 2022: 10631-10640 - [c17]C. J. Barberan, Sina Alemmohammad, Naiming Liu, Randall Balestriero, Richard G. Baraniuk:
NeuroView-RNN: It's About Time. FAccT 2022: 1683-1697 - [c16]Randall Balestriero, Zichao Wang, Richard G. Baraniuk:
DeepHull: Fast Convex Hull Approximation in High Dimensions. ICASSP 2022: 3888-3892 - [c15]Ahmed Imtiaz Humayun, Randall Balestriero, Anastasios Kyrillidis, Richard G. Baraniuk:
No More Than 6ft Apart: Robust K-Means via Radius Upper Bounds. ICASSP 2022: 4433-4437 - [c14]Ahmed Imtiaz Humayun, Randall Balestriero, Richard G. Baraniuk:
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining. ICLR 2022 - [i49]Romain Cosentino, Randall Balestriero, Yanis Bahroun, Anirvan M. Sengupta, Richard G. Baraniuk, Behnaam Aazhang:
Spatial Transformer K-Means. CoRR abs/2202.07829 (2022) - [i48]Randall Balestriero, Ishan Misra, Yann LeCun:
A Data-Augmentation Is Worth A Thousand Samples: Exact Quantification From Analytical Augmented Sample Moments. CoRR abs/2202.08325 (2022) - [i47]C. J. Barberan, Sina Alemohammad, Naiming Liu, Randall Balestriero, Richard G. Baraniuk:
NeuroView-RNN: It's About Time. CoRR abs/2202.11811 (2022) - [i46]Ahmed Imtiaz Humayun, Randall Balestriero, Richard G. Baraniuk:
Polarity Sampling: Quality and Diversity Control of Pre-Trained Generative Networks via Singular Values. CoRR abs/2203.01993 (2022) - [i45]Ahmed Imtiaz Humayun, Randall Balestriero, Anastasios Kyrillidis, Richard G. Baraniuk:
No More Than 6ft Apart: Robust K-Means via Radius Upper Bounds. CoRR abs/2203.02502 (2022) - [i44]Rudolf H. Riedi, Randall Balestriero, Richard G. Baraniuk:
Singular Value Perturbation and Deep Network Optimization. CoRR abs/2203.03099 (2022) - [i43]Bobak Toussi Kiani, Randall Balestriero, Yann LeCun, Seth Lloyd:
projUNN: efficient method for training deep networks with unitary matrices. CoRR abs/2203.05483 (2022) - [i42]Vishwanath Saragadam, Randall Balestriero, Ashok Veeraraghavan, Richard G. Baraniuk:
DeepTensor: Low-Rank Tensor Decomposition with Deep Network Priors. CoRR abs/2204.03145 (2022) - [i41]Randall Balestriero, Léon Bottou, Yann LeCun:
The Effects of Regularization and Data Augmentation are Class Dependent. CoRR abs/2204.03632 (2022) - [i40]Randall Balestriero, Yann LeCun:
Contrastive and Non-Contrastive Self-Supervised Learning Recover Global and Local Spectral Embedding Methods. CoRR abs/2205.11508 (2022) - [i39]Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, Pascal Vincent:
Guillotine Regularization: Improving Deep Networks Generalization by Removing their Head. CoRR abs/2206.13378 (2022) - [i38]Ravid Shwartz-Ziv, Randall Balestriero, Yann LeCun:
What Do We Maximize in Self-Supervised Learning? CoRR abs/2207.10081 (2022) - [i37]Randall Balestriero, Richard G. Baraniuk:
Batch Normalization Explained. CoRR abs/2209.14778 (2022) - [i36]Bobak Toussi Kiani, Randall Balestriero, Yubei Chen, Seth Lloyd, Yann LeCun:
Joint Embedding Self-Supervised Learning in the Kernel Regime. CoRR abs/2209.14884 (2022) - [i35]Grégoire Mialon, Randall Balestriero, Yann LeCun:
Variance Covariance Regularization Enforces Pairwise Independence in Self-Supervised Representations. CoRR abs/2209.14905 (2022) - [i34]Quentin Garrido, Randall Balestriero, Laurent Najman, Yann LeCun:
RankMe: Assessing the downstream performance of pretrained self-supervised representations by their rank. CoRR abs/2210.02885 (2022) - [i33]Mahmoud Assran, Randall Balestriero, Quentin Duval, Florian Bordes, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael G. Rabbat, Nicolas Ballas:
The Hidden Uniform Cluster Prior in Self-Supervised Learning. CoRR abs/2210.07277 (2022) - [i32]Randall Balestriero, Yann LeCun:
POLICE: Provably Optimal Linear Constraint Enforcement for Deep Neural Networks. CoRR abs/2211.01340 (2022) - [i31]Badr Youbi Idrissi, Diane Bouchacourt, Randall Balestriero, Ivan Evtimov, Caner Hazirbas, Nicolas Ballas, Pascal Vincent, Michal Drozdzal, David Lopez-Paz, Mark Ibrahim:
ImageNet-X: Understanding Model Mistakes with Factor of Variation Annotations. CoRR abs/2211.01866 (2022) - [i30]Vivien Cabannes, Alberto Bietti, Randall Balestriero:
On minimal variations for unsupervised representation learning. CoRR abs/2211.03782 (2022) - 2021
- [j2]Randall Balestriero
, Richard G. Baraniuk
:
Mad Max: Affine Spline Insights Into Deep Learning. Proc. IEEE 109(5): 704-727 (2021) - [c13]Sina Alemohammad, Hossein Babaei, Randall Balestriero, Matt Y. Cheung, Ahmed Imtiaz Humayun, Daniel LeJeune, Naiming Liu, Lorenzo Luzi, Jasper Tan, Zichao Wang, Richard G. Baraniuk:
Wearing A Mask: Compressed Representations of Variable-Length Sequences Using Recurrent Neural Tangent Kernels. ICASSP 2021: 2950-2954 - [c12]Sina Alemohammad, Zichao Wang, Randall Balestriero, Richard G. Baraniuk:
The Recurrent Neural Tangent Kernel. ICLR 2021 - [c11]Randall Balestriero, Hervé Glotin, Richard G. Baraniuk:
Interpretable and Learnable Super-Resolution Time-Frequency Representation. MSML 2021: 118-152 - [c10]Romain Cosentino, Randall Balestriero, Richard G. Baraniuk, Behnaam Aazhang:
Deep Autoencoders: From Understanding to Generalization Guarantees. MSML 2021: 197-222 - [i29]Randall Balestriero, Haoran You, Zhihan Lu, Yutong Kou, Yingyan Lin, Richard G. Baraniuk:
Max-Affine Spline Insights Into Deep Network Pruning. CoRR abs/2101.02338 (2021) - [i28]Randall Balestriero, Richard G. Baraniuk:
Fast Jacobian-Vector Product for Deep Networks. CoRR abs/2104.00219 (2021) - [i27]C. J. Barberan, Randall Balestriero, Richard G. Baraniuk:
NeuroView: Explainable Deep Network Decision Making. CoRR abs/2110.07778 (2021) - [i26]Ahmed Imtiaz Humayun, Randall Balestriero, Richard G. Baraniuk:
MaGNET: Uniform Sampling from Deep Generative Network Manifolds Without Retraining. CoRR abs/2110.08009 (2021) - [i25]Randall Balestriero, Jerome Pesenti, Yann LeCun:
Learning in High Dimension Always Amounts to Extrapolation. CoRR abs/2110.09485 (2021) - [i24]Florian Bordes, Randall Balestriero, Pascal Vincent:
High Fidelity Visualization of What Your Self-Supervised Representation Knows About. CoRR abs/2112.09164 (2021) - 2020
- [j1]Romain Cosentino
, Randall Balestriero
, Richard G. Baraniuk
, Behnaam Aazhang
:
Universal Frame Thresholding. IEEE Signal Process. Lett. 27: 1115-1119 (2020) - [c9]Randall Balestriero, Sebastien Paris, Richard G. Baraniuk:
Analytical Probability Distributions and Exact Expectation-Maximization for Deep Generative Networks. NeurIPS 2020 - [i23]Randall Balestriero, Sebastien Paris, Richard G. Baraniuk:
Max-Affine Spline Insights into Deep Generative Networks. CoRR abs/2002.11912 (2020) - [i22]Randall Balestriero:
SymJAX: symbolic CPU/GPU/TPU programming. CoRR abs/2005.10635 (2020) - [i21]Randall Balestriero, Hervé Glotin, Richard G. Baraniuk:
Interpretable Super-Resolution via a Learned Time-Series Representation. CoRR abs/2006.07713 (2020) - [i20]Randall Balestriero, Sebastien Paris, Richard G. Baraniuk:
Analytical Probability Distributions and EM-Learning for Deep Generative Networks. CoRR abs/2006.10023 (2020) - [i19]Sina Alemohammad, Zichao Wang, Randall Balestriero, Richard G. Baraniuk:
The Recurrent Neural Tangent Kernel. CoRR abs/2006.10246 (2020) - [i18]Lorenzo Luzi, Randall Balestriero, Richard G. Baraniuk:
Ensembles of Generative Adversarial Networks for Disconnected Data. CoRR abs/2006.14600 (2020) - [i17]Romain Cosentino, Randall Balestriero, Richard G. Baraniuk, Behnaam Aazhang:
Provable Finite Data Generalization with Group Autoencoder. CoRR abs/2009.09525 (2020) - [i16]Sina Alemohammad, Hossein Babaei, Randall Balestriero, Matt Y. Cheung, Ahmed Imtiaz Humayun, Daniel LeJeune, Naiming Liu, Lorenzo Luzi, Jasper Tan, Zichao Wang, Richard G. Baraniuk:
Wearing a MASK: Compressed Representations of Variable-Length Sequences Using Recurrent Neural Tangent Kernels. CoRR abs/2010.13975 (2020) - [i15]Sina Alemohammad, Randall Balestriero, Zichao Wang, Richard G. Baraniuk:
Scalable Neural Tangent Kernel of Recurrent Architectures. CoRR abs/2012.04859 (2020) - [i14]Romain Cosentino, Randall Balestriero:
Sparse Multi-Family Deep Scattering Network. CoRR abs/2012.07662 (2020) - [i13]Romain Cosentino, Randall Balestriero, Yanis Bahroun, Anirvan M. Sengupta, Richard G. Baraniuk, Behnaam Aazhang:
Interpretable Image Clustering via Diffeomorphism-Aware K-Means. CoRR abs/2012.09743 (2020)
2010 – 2019
- 2019
- [c8]Randall Balestriero, Richard G. Baraniuk:
From Hard to Soft: Understanding Deep Network Nonlinearities via Vector Quantization and Statistical Inference. ICLR (Poster) 2019 - [c7]Zichao Wang, Randall Balestriero, Richard G. Baraniuk:
A Max-Affine Spline Perspective of Recurrent Neural Networks. ICLR (Poster) 2019 - [c6]Randall Balestriero, Romain Cosentino, Behnaam Aazhang, Richard G. Baraniuk:
The Geometry of Deep Networks: Power Diagram Subdivision. NeurIPS 2019: 15806-15815 - [i12]Randall Balestriero, Romain Cosentino, Behnaam Aazhang, Richard G. Baraniuk:
The Geometry of Deep Networks: Power Diagram Subdivision. CoRR abs/1905.08443 (2019) - [i11]Hamid Javadi, Randall Balestriero, Richard G. Baraniuk:
A Hessian Based Complexity Measure for Deep Networks. CoRR abs/1905.11639 (2019) - 2018
- [c5]Randall Balestriero, Romain Cosentino, Hervé Glotin, Richard G. Baraniuk:
Spline Filters For End-to-End Deep Learning. ICML 2018: 373-382 - [c4]Randall Balestriero, Richard G. Baraniuk:
A Spline Theory of Deep Networks. ICML 2018: 383-392 - [i10]Randall Balestriero, Hervé Glotin, Richard G. Baraniuk:
Semi-Supervised Learning Enabled by Multiscale Deep Neural Network Inversion. CoRR abs/1802.10172 (2018) - [i9]Randall Balestriero, Richard G. Baraniuk:
A Spline Theory of Deep Networks (Extended Version). CoRR abs/1805.06576 (2018) - [i8]Randall Balestriero, Richard G. Baraniuk:
From Hard to Soft: Understanding Deep Network Nonlinearities via Vector Quantization and Statistical Inference. CoRR abs/1810.09274 (2018) - 2017
- [c3]Hervé Glotin, Julien Ricard, Randall Balestriero:
Fast Chirplet Transform Injects Priors in Deep Learning of Animal Calls and Speech. ICLR (Workshop) 2017 - [i7]Randall Balestriero:
Neural Decision Trees. CoRR abs/1702.07360 (2017) - [i6]Randall Balestriero:
Multiscale Residual Mixture of PCA: Dynamic Dictionaries for Optimal Basis Learning. CoRR abs/1707.05840 (2017) - [i5]Randall Balestriero, Hervé Glotin:
Linear Time Complexity Deep Fourier Scattering Network and Extension to Nonlinear Invariants. CoRR abs/1707.05841 (2017) - [i4]Randall Balestriero, Richard G. Baraniuk:
Adaptive Partitioning Spline Neural Networks: Template Matching, Memorization, Inhibitor Connections, Inversion, Semi-Sup, Topology Search. CoRR abs/1710.09302 (2017) - [i3]Randall Balestriero, Vincent Roger, Hervé Glotin, Richard G. Baraniuk:
Semi-Supervised Learning via New Deep Network Inversion. CoRR abs/1711.04313 (2017) - [i2]Romain Cosentino, Randall Balestriero, Richard G. Baraniuk, Ankit B. Patel:
Overcomplete Frame Thresholding for Acoustic Scene Analysis. CoRR abs/1712.09117 (2017) - 2016
- [c2]Romain Cosentino, Randall Balestriero, Behnaam Aazhang:
Best basis selection using sparsity driven multi-family wavelet transform. GlobalSIP 2016: 252-256 - [i1]Hervé Glotin, Julien Ricard, Randall Balestriero:
Fast Chirplet Transform feeding CNN, application to orca and bird bioacoustics. CoRR abs/1611.08749 (2016) - 2015
- [c1]Randall Balestriero, Hervé Glotin:
Scattering Decomposition for Massive Signal Classification: From Theory to Fast Algorithm and Implementation with Validation on International Bioacoustic Benchmark. ICDM Workshops 2015: 753-761
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2023-01-08 19:40 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint