default search action
Lovekesh Vig
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c95]Shreyas Bhat Brahmavar, Ashwin Srinivasan, Tirtharaj Dash, Sowmya Ramaswamy Krishnan, Lovekesh Vig, Arijit Roy, Raviprasad Aduri:
Generating Novel Leads for Drug Discovery Using LLMs with Logical Feedback. AAAI 2024: 21-29 - [c94]Muskan Gupta, Priyanka Gupta, Jyoti Narwariya, Lovekesh Vig, Gautam Shroff:
SCM4SR: Structural Causal Model-based Data Augmentation for Robust Session-based Recommendation. SIGIR 2024: 2609-2613 - [i71]Harshit Nigam, Manasi Patwardhan, Lovekesh Vig, Gautam Shroff:
Acceleron: A Tool to Accelerate Research Ideation. CoRR abs/2403.04382 (2024) - [i70]Shubham Paliwal, Arushi Jain, Monika Sharma, Vikram Jamwal, Lovekesh Vig:
CustomText: Customized Textual Image Generation using Diffusion Models. CoRR abs/2405.12531 (2024) - [i69]Arushi Jain, Shubham Paliwal, Monika Sharma, Vikram Jamwal, Lovekesh Vig:
Multi-Subject Personalization. CoRR abs/2405.12742 (2024) - [i68]Arushi Jain, Shubham Paliwal, Monika Sharma, Lovekesh Vig, Gautam Shroff:
SmartFlow: Robotic Process Automation using LLMs. CoRR abs/2405.12842 (2024) - [i67]Pushpdeep Singh, Mayur Patidar, Lovekesh Vig:
Translating Across Cultures: LLMs for Intralingual Cultural Adaptation. CoRR abs/2406.14504 (2024) - 2023
- [c93]Mayur Patidar, Prayushi Faldu, Avinash Kumar Singh, Lovekesh Vig, Indrajit Bhattacharya, Mausam:
Do I have the Knowledge to Answer? Investigating Answerability of Knowledge Base Questions. ACL (1) 2023: 10341-10357 - [c92]Amit Sangroya, Suparshva Jain, C. Anantaram, Lovekesh Vig:
Conceptual Explanations of ECG Classification using Large Language Models. AIMLSystems 2023: 59:1-59:3 - [c91]Shabbirhussain Bhaisaheb, Shubham Paliwal, Rajaswa Patil, Manasi Patwardhan, Lovekesh Vig, Gautam Shroff:
Program Synthesis for Complex QA on Charts via Probabilistic Grammar Based Filtered Iterative Back-Translation. EACL (Findings) 2023: 2456-2470 - [c90]Jyoti Narwariya, Priyanka Gupta, Garima Gupta, Lovekesh Vig, Gautam Shroff:
X4SR: Post-Hoc Explanations for Session-based Recommendations. eCom@SIGIR 2023 - [c89]Shubham Paliwal, Bhagyashree Gaikwad, Mayur Patidar, Manasi Patwardhan, Lovekesh Vig, Meghna Mahajan, Bagya Lakshmi V, Shirish S. Karande:
Ontology Guided Supervised Contrastive Learning For Fine-grained Attribute Extraction From Fashion Images. eCom@SIGIR 2023 - [c88]Soham Rohit Chitnis, Sidong Liu, Tirtharaj Dash, Tanmay Tulsidas Verlekar, Antonio Di Ieva, Shlomo Berkovsky, Lovekesh Vig, Ashwin Srinivasan:
Domain-Specific Pre-training Improves Confidence in Whole Slide Image Classification. EMBC 2023: 1-4 - [c87]Shubham Paliwal, Manasi Patwardhan, Lovekesh Vig:
Generalization of Fine Granular Extractions from Charts. ICDAR (2) 2023: 94-110 - [c86]Shreyas Bhat Brahmavar, Rohit Rajesh, Tirtharaj Dash, Lovekesh Vig, Tanmay Tulsidas Verlekar, Md Mahmudul Hasan, Tariq Mahmood Khan, Erik Meijering, Ashwin Srinivasan:
IKD+: Reliable Low Complexity Deep Models for Retinopathy Classification. ICIP 2023: 2400-2404 - [c85]Shrey Pandit, Gautam Shroff, Ashwin Srinivasan, Lovekesh Vig:
Can LLMs solve generative visual analogies? IARML@IJCAI 2023: 30-32 - [c84]Jyotsana Khatri, Vivek Srivastava, Lovekesh Vig:
Can You Translate for Me? Code-Switched Machine Translation with Large Language Models. IJCNLP (2) 2023: 83-92 - [c83]Rishabh Patra, Ramya Hebbalaguppe, Tirtharaj Dash, Gautam Shroff, Lovekesh Vig:
Calibrating Deep Neural Networks using Explicit Regularisation and Dynamic Data Pruning. WACV 2023: 1541-1549 - [i66]S. I Harini, Gautam Shroff, Ashwin Srinivasan, Prayushi Faldu, Lovekesh Vig:
Neuro-symbolic Meta Reinforcement Learning for Trading. CoRR abs/2302.08996 (2023) - [i65]Soham Rohit Chitnis, Sidong Liu, Tirtharaj Dash, Tanmay Tulsidas Verlekar, Antonio Di Ieva, Shlomo Berkovsky, Lovekesh Vig, Ashwin Srinivasan:
Domain-Specific Pretraining Improves Confidence in Whole Slide Image Classification. CoRR abs/2302.09833 (2023) - [i64]Shreyas Bhat Brahmavar, Rohit Rajesh, Tirtharaj Dash, Lovekesh Vig, Tanmay Tulsidas Verlekar, Md Mahmudul Hasan, Tariq Mahmood Khan, Erik Meijering, Ashwin Srinivasan:
IKD+: Reliable Low Complexity Deep Models For Retinopathy Classification. CoRR abs/2303.02310 (2023) - [i63]Ritam Majumdar, Vishal Jadhav, Anirudh Deodhar, Shirish Karande, Lovekesh Vig, Venkataramana Runkana:
Symbolic Regression for PDEs using Pruned Differentiable Programs. CoRR abs/2303.07009 (2023) - [i62]Ankita Sontakke, Kanika Kalra, Manasi Patwardhan, Lovekesh Vig, Raveendra Kumar Medicherla, Ravindra Naik, Shrishti Pradhan:
Knowledge Transfer for Pseudo-code Generation from Low Resource Programming Language. CoRR abs/2303.09062 (2023) - [i61]Ritam Majumdar, Shirish Karande, Lovekesh Vig:
DeepEpiSolver: Unravelling Inverse problems in Covid, HIV, Ebola and Disease Transmission. CoRR abs/2303.14194 (2023) - [i60]Krishnam Hasija, Shrishti Pradhan, Manasi Patwardhan, Raveendra Kumar Medicherla, Lovekesh Vig, Ravindra Naik:
Neuro-symbolic Zero-Shot Code Cloning with Cross-Language Intermediate Representation. CoRR abs/2304.13350 (2023) - [i59]Aseem Arora, Shabbirhussain Bhaisaheb, Harshit Nigam, Manasi Patwardhan, Lovekesh Vig, Gautam Shroff:
Adapt and Decompose: Efficient Generalization of Text-to-SQL via Domain Adapted Least-To-Most Prompting. CoRR abs/2308.02582 (2023) - [i58]Ritam Majumdar, Vishal Jadhav, Anirudh Deodhar, Shirish Karande, Lovekesh Vig, Venkataramana Runkana:
HyperLoRA for PDEs. CoRR abs/2308.09290 (2023) - [i57]Ritam Majumdar, Shirish Karande, Lovekesh Vig:
How important are specialized transforms in Neural Operators? CoRR abs/2308.09293 (2023) - [i56]Ritam Majumdar, Amey Varhade, Shirish S. Karande, Lovekesh Vig:
Can Physics Informed Neural Operators Self Improve? CoRR abs/2311.13885 (2023) - 2022
- [c82]Atharv Sonwane, Gautam Shroff, Lovekesh Vig, Ashwin Srinivasan, Tirtharaj Dash:
Solving Visual Analogies Using Neural Algorithmic Reasoning (Student Abstract). AAAI 2022: 13055-13056 - [c81]Manu Sheoran, Monika Sharma, Meghal Dani, Lovekesh Vig:
Handling Domain Shift for Lesion Detection via Semi-supervised Domain Adaptation. ACCV (Workshops) 2022: 102-116 - [c80]Amit Sangroya, Suparshva Jain, Lovekesh Vig, C. Anantaram, Arijit Ukil, Sundeep Khandelwal:
Generating Conceptual Explanations for DL based ECG Classification Model. FLAIRS 2022 - [c79]Manu Sheoran, Meghal Dani, Monika Sharma, Lovekesh Vig:
An Efficient Anchor-Free Universal Lesion Detection in Ct-Scans. ISBI 2022: 1-4 - [c78]Vaibhav Varshney, Mayur Patidar, Rajat Kumar, Lovekesh Vig, Gautam Shroff:
Prompt Augmented Generative Replay via Supervised Contrastive Learning for Lifelong Intent Detection. NAACL-HLT (Findings) 2022: 1113-1127 - [c77]Rajat Kumar, Mayur Patidar, Vaibhav Varshney, Lovekesh Vig, Gautam Shroff:
Intent Detection and Discovery from User Logs via Deep Semi-Supervised Contrastive Clustering. NAACL-HLT 2022: 1836-1853 - [c76]Atharv Sonwane, Abhinav Lalwani, Sweta Mahajan, Gautam Shroff, Lovekesh Vig:
Neural Analogical Reasoning. NeSy 2022: 120-141 - [c75]Vishwa Shah, Aditya Sharma, Gautam Shroff, Lovekesh Vig, Tirtharaj Dash, Ashwin Srinivasan:
Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces. NeSy 2022: 142-154 - [c74]Rajaswa Patil, Manasi Patwardhan, Shirish Karande, Lovekesh Vig, Gautam Shroff:
Exploring Dimensions of Generalizability and Few-shot Transfer for Text-to-SQL Semantic Parsing. TL4NLP 2022: 103-114 - [i55]Garima Gupta, Lovekesh Vig, Gautam Shroff:
DRTCI: Learning Disentangled Representations for Temporal Causal Inference. CoRR abs/2201.08137 (2022) - [i54]Jyoti Narwariya, Chetan Verma, Pankaj Malhotra, Lovekesh Vig, Easwar Subramanian, Sanjay Bhat:
Electricity Consumption Forecasting for Out-of-distribution Time-of-Use Tariffs. CoRR abs/2202.05517 (2022) - [i53]Diksha Garg, Pankaj Malhotra, Anil Bhatia, Sanjay Bhat, Lovekesh Vig, Gautam Shroff:
Learning to Liquidate Forex: Optimal Stopping via Adaptive Top-K Regression. CoRR abs/2202.12578 (2022) - [i52]Vibhor Gupta, Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
Continual Learning for Multivariate Time Series Tasks with Variable Input Dimensions. CoRR abs/2203.06852 (2022) - [i51]Arushi Jain, Shubham Paliwal, Monika Sharma, Lovekesh Vig:
TSR-DSAW: Table Structure Recognition via Deep Spatial Association of Words. CoRR abs/2203.06873 (2022) - [i50]Manu Sheoran, Meghal Dani, Monika Sharma, Lovekesh Vig:
DKMA-ULD: Domain Knowledge augmented Multi-head Attention based Robust Universal Lesion Detection. CoRR abs/2203.06886 (2022) - [i49]Manu Sheoran, Meghal Dani, Monika Sharma, Lovekesh Vig:
An Efficient Anchor-free Universal Lesion Detection in CT-scans. CoRR abs/2203.16074 (2022) - [i48]Ritam Majumdar, Vishal Jadhav, Anirudh Deodhar, Shirish Karande, Lovekesh Vig:
On NeuroSymbolic Solutions for PDEs. CoRR abs/2207.06240 (2022) - [i47]Vishwa Shah, Aditya Sharma, Gautam Shroff, Lovekesh Vig, Tirtharaj Dash, Ashwin Srinivasan:
Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces. CoRR abs/2209.08750 (2022) - [i46]Vedant Shah, Aditya Agrawal, Lovekesh Vig, Ashwin Srinivasan, Gautam Shroff, Tanmay T. Verlekar:
Neural Feature-Adaptation for Symbolic Predictions Using Pre-Training and Semantic Loss. CoRR abs/2211.16047 (2022) - [i45]Ramya Hebbalaguppe, Rishabh Patra, Tirtharaj Dash, Gautam Shroff, Lovekesh Vig:
Calibrating Deep Neural Networks using Explicit Regularisation and Dynamic Data Pruning. CoRR abs/2212.10005 (2022) - [i44]Ritam Majumdar, Vishal Jadhav, Anirudh Deodhar, Shirish Karande, Lovekesh Vig, Venkataramana Runkana:
Real-time Health Monitoring of Heat Exchangers using Hypernetworks and PINNs. CoRR abs/2212.10032 (2022) - [i43]Mayur Patidar, Avinash Kumar Singh, Prayushi Faldu, Lovekesh Vig, Indrajit Bhattacharya, Mausam:
Do I have the Knowledge to Answer? Investigating Answerability of Knowledge Base Questions. CoRR abs/2212.10189 (2022) - 2021
- [j16]Kushal Veer Singh, Ajay Kumar Verma, Lovekesh Vig:
Deep learning based network similarity for model selection. Data Sci. 4(2): 63-83 (2021) - [j15]Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig:
Incorporating symbolic domain knowledge into graph neural networks. Mach. Learn. 110(7): 1609-1636 (2021) - [c73]Manu Sheoran, Meghal Dani, Monika Sharma, Lovekesh Vig:
DKMA-ULD: Domain Knowledge augmented Multi-head Attention based Robust Universal Lesion Detection. BMVC 2021: 413 - [c72]Priyanka Gupta, Ankit Sharma, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
CauSeR: Causal Session-based Recommendations for Handling Popularity Bias. CIKM 2021: 3048-3052 - [c71]Arushi Jain, Shubham Paliwal, Monika Sharma, Lovekesh Vig:
TSR-DSAW: Table Structure Recognition via Deep Spatial Association of Words. ESANN 2021 - [c70]Shruti Kunde, Amey Pandit, Kushagra Mahajan, Monika Sharma, Rekha Singhal, Lovekesh Vig:
Data-Efficient Training of High-Resolution Images in Medical Domain. ESANN 2021 - [c69]Vibhor Gupta, Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
Continual Learning for Multivariate Time Series Tasks with Variable Input Dimensions. ICDM 2021: 161-170 - [c68]Manasi Malik, Garima Gupta, Lovekesh Vig, Gautam Shroff:
BCQ4DCA: Budget Constrained Deep Q-Network for Dynamic Campaign Allocation in Computational Advertising. IJCNN 2021: 1-8 - [c67]Shubham Paliwal, Monika Sharma, Lovekesh Vig:
OSSR-PID: One-Shot Symbol Recognition in P&ID Sheets using Path Sampling and GCN. IJCNN 2021: 1-8 - [c66]Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig, Arijit Roy:
Using Domain-Knowledge to Assist Lead Discovery in Early-Stage Drug Design. ILP 2021: 78-94 - [c65]Shubham Paliwal, Arushi Jain, Monika Sharma, Lovekesh Vig:
Digitize-PID: Automatic Digitization of Piping and Instrumentation Diagrams. PAKDD (Workshops) 2021: 168-180 - [i42]Shubham Paliwal, Arushi Jain, Monika Sharma, Lovekesh Vig:
Digitize-PID: Automatic Digitization of Piping and Instrumentation Diagrams. CoRR abs/2109.03794 (2021) - [i41]Shubham Paliwal, Monika Sharma, Lovekesh Vig:
OSSR-PID: One-Shot Symbol Recognition in P&ID Sheets using Path Sampling and GCN. CoRR abs/2109.03849 (2021) - [i40]Atharv Sonwane, Sharad Chitlangia, Tirtharaj Dash, Lovekesh Vig, Gautam Shroff, Ashwin Srinivasan:
Using Program Synthesis and Inductive Logic Programming to solve Bongard Problems. CoRR abs/2110.09947 (2021) - [i39]Mrinal Rawat, Ramya Hebbalaguppe, Lovekesh Vig:
PnPOOD : Out-Of-Distribution Detection for Text Classification via Plug andPlay Data Augmentation. CoRR abs/2111.00506 (2021) - [i38]Atharv Sonwane, Gautam Shroff, Lovekesh Vig, Ashwin Srinivasan, Tirtharaj Dash:
Solving Visual Analogies Using Neural Algorithmic Reasoning. CoRR abs/2111.10361 (2021) - 2020
- [j14]Priyanka Gupta, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, Gautam Shroff:
Transfer Learning for Clinical Time Series Analysis Using Deep Neural Networks. J. Heal. Informatics Res. 4(2): 112-137 (2020) - [j13]Ashwin Srinivasan, Lovekesh Vig, Gautam Shroff:
Constructing generative logical models for optimisation problems using domain knowledge. Mach. Learn. 109(7): 1371-1392 (2020) - [c64]Nikhil Jaiswal, Mayur Patidar, Surabhi Kumari, Manasi Patwardhan, Shirish Karande, Puneet Agarwal, Lovekesh Vig:
Improving NMT via Filtered Back Translation. WAT@AAC/IJCNLPL 2020: 154-159 - [c63]Amit Sangroya, Mouli Rastogi, C. Anantaram, Lovekesh Vig:
Guided-LIME: Structured Sampling based Hybrid Approach towards Explaining Blackbox Machine Learning Models. CIKM (Workshops) 2020 - [c62]Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, Vishnu TV:
Meta-Learning for Few-Shot Time Series Classification. COMAD/CODS 2020: 28-36 - [c61]Nikita Goel, Monika Sharma, Lovekesh Vig:
Font-ProtoNet: Prototypical Network based Font Identification of Document Images in Low Data Regime. CVPR Workshops 2020: 2369-2376 - [c60]Mouli Rastogi, Syed Afshan Ali, Mrinal Rawat, Lovekesh Vig, Puneet Agarwal, Gautam Shroff, Ashwin Srinivasan:
Information Extraction from Document Images via FCA based Template Detection and Knowledge Graph Rule Induction. CVPR Workshops 2020: 2377-2385 - [c59]Kushagra Mahajan, Monika Sharma, Lovekesh Vig:
Meta-DermDiagnosis: Few-Shot Skin Disease Identification using Meta-Learning. CVPR Workshops 2020: 3142-3151 - [c58]Ankit Sharma, Garima Gupta, Ranjitha Prasad, Arnab Chatterjee, Lovekesh Vig, Gautam Shroff:
MultiMBNN: Matched and Balanced Causal Inference with Neural Networks. ESANN 2020: 25-30 - [c57]Sachin Kumar, Garima Gupta, Ranjitha Prasad, Arnab Chatterjee, Lovekesh Vig, Gautam Shroff:
CAMTA: Causal Attention Model for Multi-touch Attribution. ICDM (Workshops) 2020: 79-86 - [c56]Saurabh Srivastava, Puneet Agarwal, Gautam Shroff, Lovekesh Vig, Vidya Vikas:
Capsule Based Neural Network Architecture to perform completeness check for Patent Eligibility Process. IJCNN 2020: 1-8 - [c55]Ankit Sharma, Garima Gupta, Ranjitha Prasad, Arnab Chatterjee, Lovekesh Vig, Gautam Shroff:
Hi-CI: Deep Causal Inference in High Dimensions. CD@KDD 2020: 39-61 - [c54]Himani Srivastava, Prerna Khurana, Saurabh Srivastava, Vaibhav Varshney, Lovekesh Vig, Puneet Agarwal, Gautam Shroff:
Improved Question Answering using Domain Prediction. Converse@KDD 2020 - [c53]Kushagra Mahajan, Monika Sharma, Lovekesh Vig, Rishab Khincha, Soundarya Krishnan, Adithya Niranjan, Tirtharaj Dash, Ashwin Srinivasan, Gautam Shroff:
CovidDiagnosis: Deep Diagnosis of COVID-19 Patients Using Chest X-Rays. TIA@MICCAI 2020: 61-73 - [c52]Soundarya Krishnan, Rishab Khincha, Lovekesh Vig, Tirtharaj Dash, Ashwin Srinivasan:
A Case Study of Transfer of Lesion-Knowledge. iMIMIC/MIL3ID/LABELS@MICCAI 2020: 138-145 - [i37]Shubham Paliwal, Vishwanath D, Rohit Rahul, Monika Sharma, Lovekesh Vig:
TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images. CoRR abs/2001.01469 (2020) - [i36]Ankit Sharma, Garima Gupta, Ranjitha Prasad, Arnab Chatterjee, Lovekesh Vig, Gautam Shroff:
MultiMBNN: Matched and Balanced Causal Inference with Neural Networks. CoRR abs/2004.13446 (2020) - [i35]Jyoti Narwariya, Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Gautam Shroff:
Graph Neural Networks for Leveraging Industrial Equipment Structure: An application to Remaining Useful Life Estimation. CoRR abs/2006.16556 (2020) - [i34]Vibhor Gupta, Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
Handling Variable-Dimensional Time Series with Graph Neural Networks. CoRR abs/2007.00411 (2020) - [i33]Ankit Sharma, Garima Gupta, Ranjitha Prasad, Arnab Chatterjee, Lovekesh Vig, Gautam Shroff:
Hi-CI: Deep Causal Inference in High Dimensions. CoRR abs/2008.09858 (2020) - [i32]Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig:
Incorporating Symbolic Domain Knowledge into Graph Neural Networks. CoRR abs/2010.13900 (2020) - [i31]Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
Batch-Constrained Distributional Reinforcement Learning for Session-based Recommendation. CoRR abs/2012.08984 (2020) - [i30]Rishab Khincha, Soundarya Krishnan, Krishnan Guru-Murthy, Tirtharaj Dash, Lovekesh Vig, Ashwin Srinivasan:
Constructing and Evaluating an Explainable Model for COVID-19 Diagnosis from Chest X-rays. CoRR abs/2012.10787 (2020) - [i29]Sachin Kumar, Garima Gupta, Ranjitha Prasad, Arnab Chatterjee, Lovekesh Vig, Gautam Shroff:
CAMTA: Casual Attention Model for Multi-touch Attribution. CoRR abs/2012.11403 (2020)
2010 – 2019
- 2019
- [j12]Sucheta Chauhan, Lovekesh Vig, Shandar Ahmad:
ECG anomaly class identification using LSTM and error profile modeling. Comput. Biol. Medicine 109: 14-21 (2019) - [j11]Sucheta Chauhan, Lovekesh Vig, Michele De Filippo De Grazia, Maurizio Corbetta, Shandar Ahmad, Marco Zorzi:
A Comparison of Shallow and Deep Learning Methods for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images. Frontiers Neuroinformatics 13: 53 (2019) - [j10]Ashwin Srinivasan, Lovekesh Vig, Michael Bain:
Logical Explanations for Deep Relational Machines Using Relevance Information. J. Mach. Learn. Res. 20: 130:1-130:47 (2019) - [c51]Kaushal Paneri, Vishnu TV, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
Regularizing Fully Convolutional Networks for Time Series Classification by Decorrelating Filters. AAAI 2019: 10003-10004 - [c50]Mayur Patidar, Surabhi Kumari, Manasi Patwardhan, Shirish Karande, Puneet Agarwal, Lovekesh Vig, Gautam Shroff:
From Monolingual to Multilingual FAQ Assistant using Multilingual Co-training. DeepLo@EMNLP-IJCNLP 2019: 115-123 - [c49]Arijit Ukil, Pankaj Malhotra, Soma Bandyopadhyay, Tulika Bose, Ishan Sahu, Ayan Mukherjee, Lovekesh Vig, Arpan Pal, Gautam Shroff:
Fusing Features based on Signal Properties and TimeNet for Time Series Classification. ESANN 2019 - [c48]Kushagra Mahajan, Monika Sharma, Lovekesh Vig:
Character Keypoint-Based Homography Estimation in Scanned Documents for Efficient Information Extraction. CBDAR@ICDAR 2019: 25-30 - [c47]Shubham Singh Paliwal, Vishwanath D, Rohit Rahul, Monika Sharma, Lovekesh Vig:
TableNet: Deep Learning Model for End-to-end Table Detection and Tabular Data Extraction from Scanned Document Images. ICDAR 2019: 128-133 - [c46]Rohit Rahul, Shubham Paliwal, Monika Sharma, Lovekesh Vig:
Automatic Information Extraction from Piping and Instrumentation Diagrams. ICPRAM 2019: 163-172 - [c45]Kathan Kashiparekh, Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
ConvTimeNet: A Pre-trained Deep Convolutional Neural Network for Time Series Classification. IJCNN 2019: 1-8 - [c44]Monika Sharma, Shikha Gupta, Arindam Chowdhury, Lovekesh Vig:
ChartNet: Visual Reasoning over Statistical Charts using MAC-Networks. IJCNN 2019: 1-7 - [c43]Saurabh Srivastava, Puneet Agarwal, Gautam Shroff, Lovekesh Vig:
Hierarchical Capsule Based Neural Network Architecture for Sequence Labeling. IJCNN 2019: 1-8 - [c42]Vishal Sunder, Ashwin Srinivasan, Lovekesh Vig, Gautam Shroff, Rohit Rahul:
One-shot Information Extraction from Document Images using Neuro-Deductive Program Synthesis. NeSy@IJCAI 2019 - [c41]Vishnu TV, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, Gautam Shroff:
Meta-Learning for Black-Box Optimization. ECML/PKDD (2) 2019: 366-381 - [c40]Diksha Garg, Priyanka Gupta, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
Sequence and Time Aware Neighborhood for Session-based Recommendations: STAN. SIGIR 2019: 1069-1072 - [i28]Monika Sharma, Abhishek Verma, Lovekesh Vig:
Learning to Clean: A GAN Perspective. CoRR abs/1901.11382 (2019) - [i27]Rohit Rahul, Shubham Paliwal, Monika Sharma, Lovekesh Vig:
Automatic Information Extraction from Piping and Instrumentation Diagrams. CoRR abs/1901.11383 (2019) - [i26]Vishnu TV, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
Data-driven Prognostics with Predictive Uncertainty Estimation using Ensemble of Deep Ordinal Regression Models. CoRR abs/1903.09795 (2019) - [i25]Priyanka Gupta, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, Gautam Shroff:
Transfer Learning for Clinical Time Series Analysis using Deep Neural Networks. CoRR abs/1904.00655 (2019) - [i24]Kathan Kashiparekh, Jyoti Narwariya, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
ConvTimeNet: A Pre-trained Deep Convolutional Neural Network for Time Series Classification. CoRR abs/1904.12546 (2019) - [i23]Vishal Sunder, Ashwin Srinivasan, Lovekesh Vig, Gautam Shroff, Rohit Rahul:
One-shot Information Extraction from Document Images using Neuro-Deductive Program Synthesis. CoRR abs/1906.02427 (2019) - [i22]Vishnu TV, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, Gautam Shroff:
Meta-Learning for Black-box Optimization. CoRR abs/1907.06901 (2019) - [i21]Priyanka Gupta, Diksha Garg, Pankaj Malhotra, Lovekesh Vig, Gautam Shroff:
NISER: Normalized Item and Session Representations with Graph Neural Networks. CoRR abs/1909.04276 (2019) - [i20]