default search action
Daniel Dadush
Person information
- affiliation: Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j20]Daniel Dadush, Sophie Huiberts, Bento Natura, László A. Végh:
A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix. Math. Program. 204(1): 135-206 (2024) - [j19]Daniel Dadush, Christopher Hojny, Sophie Huiberts, Stefan Weltge:
A simple method for convex optimization in the oracle model. Math. Program. 206(1): 283-304 (2024) - [j18]Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh:
On circuit diameter bounds via circuit imbalances. Math. Program. 206(1): 631-662 (2024) - [j17]Daniel Dadush, Martin Milanic, Tami Tamir:
Introduction: ACM-SIAM Symposium on Discrete Algorithms (SODA) 2022 Special Issue. ACM Trans. Algorithms 20(3): 21 (2024) - [c46]Daniel Dadush, Akshay Ramachandran:
Strongly Polynomial Frame Scaling to High Precision. SODA 2024: 962-981 - [c45]Daniel Dadush, Zhuan Khye Koh, Bento Natura, Neil Olver, László A. Végh:
A Strongly Polynomial Algorithm for Linear Programs with At Most Two Nonzero Entries per Row or Column. STOC 2024: 1561-1572 - [i38]Daniel Dadush, Akshay Ramachandran:
Strongly Polynomial Frame Scaling to High Precision. CoRR abs/2402.04799 (2024) - 2023
- [j16]Sander Borst, Daniel Dadush, Sophie Huiberts, Samarth Tiwari:
On the integrality gap of binary integer programs with Gaussian data. Math. Program. 197(2): 1221-1263 (2023) - [c44]Sander Borst, Daniel Dadush, Sophie Huiberts, Danish Kashaev:
A Nearly Optimal Randomized Algorithm for Explorable Heap Selection. IPCO 2023: 29-43 - [c43]Daniel Dadush, Friedrich Eisenbrand, Thomas Rothvoss:
From Approximate to Exact Integer Programming. IPCO 2023: 100-114 - [c42]Daniel Dadush, Arthur Léonard, Lars Rohwedder, José Verschae:
Optimizing Low Dimensional Functions over the Integers. IPCO 2023: 115-126 - [c41]Sander Borst, Daniel Dadush, Dan Mikulincer:
Integrality Gaps for Random Integer Programs via Discrepancy. SODA 2023: 1692-1733 - [i37]Daniel Dadush, Arthur Léonard, Lars Rohwedder, José Verschae:
Optimizing Low Dimensional Functions over the Integers. CoRR abs/2303.02474 (2023) - 2022
- [c40]Gilles Bonnet, Daniel Dadush, Uri Grupel, Sophie Huiberts, Galyna Livshyts:
Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes. SoCG 2022: 18:1-18:15 - [c39]Xavier Allamigeon, Daniel Dadush, Georg Loho, Bento Natura, László A. Végh:
Interior point methods are not worse than Simplex. FOCS 2022: 267-277 - [c38]Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh:
On Circuit Diameter Bounds via Circuit Imbalances. IPCO 2022: 140-153 - [c37]Daniel Dadush, Christopher Hojny, Sophie Huiberts, Stefan Weltge:
A Simple Method for Convex Optimization in the Oracle Model. IPCO 2022: 154-167 - [c36]Daniel Dadush, László A. Végh, Giacomo Zambelli:
On finding exact solutions of linear programs in the oracle model. SODA 2022: 2700-2722 - [c35]Daniel Dadush, Haotian Jiang, Victor Reis:
A new framework for matrix discrepancy: partial coloring bounds via mirror descent. STOC 2022: 649-658 - [i36]Xavier Allamigeon, Daniel Dadush, Georg Loho, Bento Natura, László A. Végh:
Interior point methods are not worse than Simplex. CoRR abs/2206.08810 (2022) - [i35]Sander Borst, Daniel Dadush, Sophie Huiberts, Danish Kashaev:
A nearly optimal randomized algorithm for explorable heap selection. CoRR abs/2210.05982 (2022) - [i34]Daniel Dadush, Friedrich Eisenbrand, Thomas Rothvoss:
From approximate to exact integer programming. CoRR abs/2211.03859 (2022) - 2021
- [j15]Dan Dadush, László A. Végh, Giacomo Zambelli:
Geometric Rescaling Algorithms for Submodular Function Minimization. Math. Oper. Res. 46(3): 1081-1108 (2021) - [c34]Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh:
An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems. ESA 2021: 36:1-36:15 - [c33]Sander Borst, Daniel Dadush, Neil Olver, Makrand Sinha:
Majorizing Measures for the Optimizer. ITCS 2021: 73:1-73:20 - [c32]Sander Borst, Daniel Dadush, Sophie Huiberts, Samarth Tiwari:
On the Integrality Gap of Binary Integer Programs with Gaussian Data. IPCO 2021: 427-442 - [i33]Daniel Dadush, Haotian Jiang, Victor Reis:
A New Framework for Matrix Discrepancy: Partial Coloring Bounds via Mirror Descent. CoRR abs/2111.03171 (2021) - [i32]Daniel Dadush, Zhuan Khye Koh, Bento Natura, László A. Végh:
On Circuit Diameter Bounds via Circuit Imbalances. CoRR abs/2111.07913 (2021) - [i31]Gilles Bonnet, Daniel Dadush, Uri Grupel, Sophie Huiberts, Galyna Livshyts:
Asymptotic Bounds on the Combinatorial Diameter of Random Polytopes. CoRR abs/2112.13027 (2021) - 2020
- [j14]Daniel Dadush, László A. Végh, Giacomo Zambelli:
Rescaling Algorithms for Linear Conic Feasibility. Math. Oper. Res. 45(2): 732-754 (2020) - [j13]Daniel Dadush, Sophie Huiberts:
A Friendly Smoothed Analysis of the Simplex Method. SIAM J. Comput. 49(5) (2020) - [c31]Daniel Dadush, Samarth Tiwari:
On the Complexity of Branching Proofs. CCC 2020: 34:1-34:35 - [c30]Daniel Dadush, Bento Natura, László A. Végh:
Revisiting Tardos's Framework for Linear Programming: Faster Exact Solutions using Approximate Solvers. FOCS 2020: 931-942 - [c29]Daniel Dadush, Sophie Huiberts, Bento Natura, László A. Végh:
A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix. STOC 2020: 761-774 - [p1]Daniel Dadush, Sophie Huiberts:
Smoothed Analysis of the Simplex Method. Beyond the Worst-Case Analysis of Algorithms 2020: 309-333 - [i30]Daniel Dadush, Samarth Tiwari:
On the Complexity of Branching Proofs. CoRR abs/2006.04124 (2020) - [i29]Daniel Dadush, Bento Natura, László A. Végh:
Revisiting Tardos's Framework for Linear Programming: Faster Exact Solutions using Approximate Solvers. CoRR abs/2009.04942 (2020) - [i28]Daniel Dadush, Christopher Hojny, Sophie Huiberts, Stefan Weltge:
Simple Iterative Methods for Linear Optimization over Convex Sets. CoRR abs/2011.08557 (2020) - [i27]Sander Borst, Daniel Dadush, Sophie Huiberts, Samarth Tiwari:
On the Integrality Gap of Binary Integer Programs with Gaussian Data. CoRR abs/2012.08346 (2020) - [i26]Sander Borst, Daniel Dadush, Neil Olver, Makrand Sinha:
Majorizing Measures for the Optimizer. CoRR abs/2012.13306 (2020)
2010 – 2019
- 2019
- [j12]Nikhil Bansal, Daniel Dadush, Shashwat Garg:
An Algorithm for Komlós Conjecture Matching Banaszczyk's Bound. SIAM J. Comput. 48(2): 534-553 (2019) - [j11]Antonio Campello, Daniel Dadush, Cong Ling:
AWGN-Goodness Is Enough: Capacity-Achieving Lattice Codes Based on Dithered Probabilistic Shaping. IEEE Trans. Inf. Theory 65(3): 1961-1971 (2019) - [j10]Nikhil Bansal, Daniel Dadush, Shashwat Garg, Shachar Lovett:
The Gram-Schmidt Walk: A Cure for the Banaszczyk Blues. Theory Comput. 15: 1-27 (2019) - [j9]Daniel Dadush, Shashwat Garg, Shachar Lovett, Aleksandar Nikolov:
Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem. Theory Comput. 15: 1-58 (2019) - [c28]Daniel Dadush:
On approximating the covering radius and finding dense lattice subspaces. STOC 2019: 1021-1026 - [i25]Daniel Dadush, Sophie Huiberts, Bento Natura, László A. Végh:
A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix. CoRR abs/1912.06252 (2019) - 2018
- [c27]Daniel Dadush, Aleksandar Nikolov, Kunal Talwar, Nicole Tomczak-Jaegermann:
Balancing Vectors in Any Norm. FOCS 2018: 1-10 - [c26]Karthekeyan Chandrasekaran, Daniel Dadush, Venkata Gandikota, Elena Grigorescu:
Lattice-based Locality Sensitive Hashing is Optimal. ITCS 2018: 42:1-42:18 - [c25]Daniel Dadush, László A. Végh, Giacomo Zambelli:
Geometric Rescaling Algorithms for Submodular Function Minimization. SODA 2018: 832-848 - [c24]Daniel Dadush, Cristóbal Guzmán, Neil Olver:
Fast, Deterministic and Sparse Dimensionality Reduction. SODA 2018: 1330-1344 - [c23]Daniel Dadush, Sophie Huiberts:
A friendly smoothed analysis of the simplex method. STOC 2018: 390-403 - [c22]Nikhil Bansal, Daniel Dadush, Shashwat Garg, Shachar Lovett:
The gram-schmidt walk: a cure for the Banaszczyk blues. STOC 2018: 587-597 - 2017
- [i24]Daniel Dadush, László A. Végh, Giacomo Zambelli:
Geometric Rescaling Algorithms for Submodular Function Minimization. CoRR abs/1707.05065 (2017) - [i23]Antonio Campello, Daniel Dadush:
AWGN-Goodness is Enough: Capacity-Achieving Lattice Codes based on Dithered Probabilistic Shaping. CoRR abs/1707.06688 (2017) - [i22]Nikhil Bansal, Daniel Dadush, Shashwat Garg, Shachar Lovett:
The Gram-Schmidt Walk: A Cure for the Banaszczyk Blues. CoRR abs/1708.01079 (2017) - [i21]Daniel Dadush, Sophie Huiberts:
A Friendly Smoothed Analysis of the Simplex Method. CoRR abs/1711.05667 (2017) - [i20]Karthekeyan Chandrasekaran, Daniel Dadush, Venkata Gandikota, Elena Grigorescu:
Lattice-based Locality Sensitive Hashing is Optimal. CoRR abs/1712.08558 (2017) - 2016
- [j8]Daniel Dadush, Nicolai Hähnle:
On the Shadow Simplex Method for Curved Polyhedra. Discret. Comput. Geom. 56(4): 882-909 (2016) - [j7]Daniel Dadush, Gábor Kun:
Lattice Sparsification and the Approximate Closest Vector Problem. Theory Comput. 12(1): 1-34 (2016) - [c21]Daniel Dadush, Shashwat Garg, Shachar Lovett, Aleksandar Nikolov:
Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem. APPROX-RANDOM 2016: 28:1-28:12 - [c20]Huck Bennett, Daniel Dadush, Noah Stephens-Davidowitz:
On the Lattice Distortion Problem. ESA 2016: 9:1-9:17 - [c19]Daniel Dadush, Oded Regev:
Towards Strong Reverse Minkowski-Type Inequalities for Lattices. FOCS 2016: 447-456 - [c18]Nikhil Bansal, Daniel Dadush, Shashwat Garg:
An Algorithm for Komlós Conjecture Matching Banaszczyk's Bound. FOCS 2016: 788-799 - [c17]Daniel Dadush, László A. Végh, Giacomo Zambelli:
Rescaled Coordinate Descent Methods for Linear Programming. IPCO 2016: 26-37 - [i19]Nikhil Bansal, Daniel Dadush, Shashwat Garg:
An Algorithm for Komlós Conjecture Matching Banaszczyk's bound. CoRR abs/1605.02882 (2016) - [i18]Huck Bennett, Daniel Dadush, Noah Stephens-Davidowitz:
On the Lattice Distortion Problem. CoRR abs/1605.03613 (2016) - [i17]Daniel Dadush, Oded Regev:
Towards Strong Reverse Minkowski-type Inequalities for Lattices. CoRR abs/1606.06913 (2016) - [i16]Daniel Dadush, László A. Végh, Giacomo Zambelli:
Rescaling Algorithms for Linear Programming - Part I: Conic feasibility. CoRR abs/1611.06427 (2016) - [i15]Daniel Dadush, Shashwat Garg, Shachar Lovett, Aleksandar Nikolov:
Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem. CoRR abs/1612.04304 (2016) - 2015
- [j6]Jop Briët, Daniel Dadush, Sebastian Pokutta:
On the existence of 0/1 polytopes with high semidefinite extension complexity. Math. Program. 153(1): 179-199 (2015) - [c16]Daniel Dadush, Nicolai Hähnle:
On the Shadow Simplex Method for Curved Polyhedra. SoCG 2015: 345-359 - [c15]Daniel Dadush:
Faster Deterministic Volume Estimation in the Oracle Model via Thin Lattice Coverings. SoCG 2015: 704-718 - [c14]Divesh Aggarwal, Daniel Dadush, Noah Stephens-Davidowitz:
Solving the Closest Vector Problem in 2^n Time - The Discrete Gaussian Strikes Again! FOCS 2015: 563-582 - [c13]Daniel Dadush, Nicolas Bonifas:
Short Paths on the Voronoi Graph and Closest Vector Problem with Preprocessing. SODA 2015: 295-314 - [c12]Divesh Aggarwal, Daniel Dadush, Oded Regev, Noah Stephens-Davidowitz:
Solving the Shortest Vector Problem in 2n Time Using Discrete Gaussian Sampling: Extended Abstract. STOC 2015: 733-742 - [i14]Divesh Aggarwal, Daniel Dadush, Noah Stephens-Davidowitz:
Solving the Closest Vector Problem in $2^n$ Time - The Discrete Gaussian Strikes Again! CoRR abs/1504.01995 (2015) - 2014
- [j5]Daniel Dadush:
A Randomized Sieving Algorithm for Approximate Integer Programming. Algorithmica 70(2): 208-244 (2014) - [j4]Daniel Dadush, Santanu S. Dey, Juan Pablo Vielma:
On the Chvátal-Gomory closure of a compact convex set. Math. Program. 145(1-2): 327-348 (2014) - [c11]Daniel Dadush, Oded Regev, Noah Stephens-Davidowitz:
On the Closest Vector Problem with a Distance Guarantee. CCC 2014: 98-109 - [i13]Daniel Dadush, Oded Regev, Noah Stephens-Davidowitz:
On the Closest Vector Problem with a Distance Guarantee. CoRR abs/1409.8063 (2014) - [i12]Nicolas Bonifas, Daniel Dadush:
Short Paths on the Voronoi Graph and the Closest Vector Problem with Preprocessing. CoRR abs/1412.6168 (2014) - [i11]Daniel Dadush, Nicolai Hähnle:
On the Shadow Simplex Method for Curved Polyhedra. CoRR abs/1412.6705 (2014) - [i10]Kai-Min Chung, Daniel Dadush, Feng-Hao Liu, Chris Peikert:
On the Lattice Smoothing Parameter Problem. CoRR abs/1412.7979 (2014) - [i9]Divesh Aggarwal, Daniel Dadush, Oded Regev, Noah Stephens-Davidowitz:
Solving the Shortest Vector Problem in $2^n$ Time via Discrete Gaussian Sampling. CoRR abs/1412.7994 (2014) - 2013
- [j3]Daniel Dadush, Santosh S. Vempala:
Near-optimal deterministic algorithms for volume computation via M-ellipsoids. Proc. Natl. Acad. Sci. USA 110(48): 19237-19245 (2013) - [c10]Kai-Min Chung, Daniel Dadush, Feng-Hao Liu, Chris Peikert:
On the Lattice Smoothing Parameter Problem. CCC 2013: 230-241 - [c9]Jop Briët, Daniel Dadush, Sebastian Pokutta:
On the Existence of 0/1 Polytopes with High Semidefinite Extension Complexity. ESA 2013: 217-228 - [c8]Daniel Dadush, Gábor Kun:
Lattice Sparsification and the Approximate Closest Vector Problem. SODA 2013: 1088-1102 - [c7]Daniel Dadush, Daniele Micciancio:
Algorithms for the Densest Sub-Lattice Problem. SODA 2013: 1103-1122 - [i8]Jop Briët, Daniel Dadush, Sebastian Pokutta:
On the existence of 0/1 polytopes with high semidefinite extension complexity. CoRR abs/1305.3268 (2013) - [i7]Daniel Dadush:
A Deterministic Polynomial Space Construction for eps-nets under any Norm. CoRR abs/1311.6671 (2013) - 2012
- [c6]Daniel Dadush:
A O(1/ε 2) n -Time Sieving Algorithm for Approximate Integer Programming. LATIN 2012: 207-218 - [c5]Daniel Dadush, Santosh S. Vempala:
Deterministic construction of an approximate M-ellipsoid and its applications to derandomizing lattice algorithms. SODA 2012: 1445-1456 - [c4]Aditya Bhaskara, Daniel Dadush, Ravishankar Krishnaswamy, Kunal Talwar:
Unconditional differentially private mechanisms for linear queries. STOC 2012: 1269-1284 - [i6]Daniel Dadush, Santosh S. Vempala:
Deterministic 2^{O(n)} Algorithms for M-Ellipsoids, Lattice Problems and Volume Estimation. CoRR abs/1201.5972 (2012) - [i5]Daniel Dadush, Gábor Kun:
Lattice Sparsification and the Approximate Closest Vector Problem. CoRR abs/1212.6781 (2012) - 2011
- [j2]Daniel Dadush, Santanu S. Dey, Juan Pablo Vielma:
The Chvátal-Gomory Closure of a Strictly Convex Body. Math. Oper. Res. 36(2): 227-239 (2011) - [j1]Daniel Dadush, Santanu S. Dey, Juan Pablo Vielma:
The split closure of a strictly convex body. Oper. Res. Lett. 39(2): 121-126 (2011) - [c3]Daniel Dadush, Chris Peikert, Santosh S. Vempala:
Enumerative Lattice Algorithms in any Norm Via M-ellipsoid Coverings. FOCS 2011: 580-589 - [c2]Daniel Dadush, Santanu S. Dey, Juan Pablo Vielma:
On the Chvátal-Gomory Closure of a Compact Convex Set. IPCO 2011: 130-142 - [i4]Daniel Dadush, Santosh S. Vempala:
Deterministic Construction of an Approximate M-Ellipsoid and its Application to Derandomizing Lattice Algorithms. CoRR abs/1107.5478 (2011) - [i3]Daniel Dadush:
A O(1/eps^2)^n Time Sieving Algorithm for Approximate Integer Programming. CoRR abs/1109.2477 (2011) - 2010
- [c1]Karthekeyan Chandrasekaran, Daniel Dadush, Santosh S. Vempala:
Thin Partitions: Isoperimetric Inequalities and a Sampling Algorithm for Star Shaped Bodies. SODA 2010: 1630-1645 - [i2]Daniel Dadush, Chris Peikert, Santosh S. Vempala:
Enumerative Algorithms for the Shortest and Closest Lattice Vector Problems in Any Norm via M-Ellipsoid Coverings. CoRR abs/1011.5666 (2010)
2000 – 2009
- 2009
- [i1]Karthekeyan Chandrasekaran, Daniel Dadush, Santosh S. Vempala:
Thin Partitions: Isoperimetric Inequalities and Sampling Algorithms for some Nonconvex Families. CoRR abs/0904.0583 (2009)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:18 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint