default search action
Theory of Evolutionary Computation 2020
- Benjamin Doerr, Frank Neumann:
Theory of Evolutionary Computation - Recent Developments in Discrete Optimization. Natural Computing Series, Springer 2020, ISBN 978-3-030-29413-7 - Benjamin Doerr:
Probabilistic Tools for the Analysis of Randomized Optimization Heuristics. 1-87 - Johannes Lengler:
Drift Analysis. 89-131 - Carola Doerr:
Complexity Theory for Discrete Black-Box Optimization Heuristics. 133-212 - Frank Neumann, Andrew M. Sutton:
Parameterized Complexity Analysis of Randomized Search Heuristics. 213-248 - Thomas Jansen:
Analysing Stochastic Search Heuristics Operating on a Fixed Budget. 249-270 - Benjamin Doerr, Carola Doerr:
Theory of Parameter Control for Discrete Black-Box Optimization: Provable Performance Gains Through Dynamic Parameter Choices. 271-321 - Frank Neumann, Mojgan Pourhassan, Vahid Roostapour:
Analysis of Evolutionary Algorithms in Dynamic and Stochastic Environments. 323-357 - Dirk Sudholt:
The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses. 359-404 - Martin S. Krejca, Carsten Witt:
Theory of Estimation-of-Distribution Algorithms. 405-442 - Christine Zarges:
Theoretical Foundations of Immune-Inspired Randomized Search Heuristics for Optimization. 443-474 - Andrei Lissovoi, Pietro S. Oliveto:
Computational Complexity Analysis of Genetic Programming. 475-518
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.