


default search action
International Journal of Medical Informatics, Volume 171
Volume 171, March 2023
- Aditya Kashyap, Chris Callison-Burch, Mary Regina Boland
:
A deep learning method to detect opioid prescription and opioid use disorder from electronic health records. 104979
- Rosy Tsopra
, Nathan Peiffer-Smadja, Caroline Charlier, Florence Campeotto, Cédric Lemogne, Philippe Ruszniewski, Benoît Vivien, Anita Burgun:
Putting undergraduate medical students in AI-CDSS designers' shoes: An innovative teaching method to develop digital health critical thinking. 104980
- Qi Zhang, Yinglu Liang
, Yi Zhang, Zihao Tao, Rui Li
, Hai Bi:
A comparative study of attention mechanism based deep learning methods for bladder tumor segmentation. 104984
- Betina Ross S. Idnay
, Yilu Fang
, Caitlin N. Dreisbach
, Karen Marder, Chunhua Weng, Rebecca Schnall
:
Clinical research staff perceptions on a natural language processing-driven tool for eligibility prescreening: An iterative usability assessment. 104985
- Martina Fernández-Gutiérrez, Pilar Bas-Sarmiento, Antonio Jesús Marín-Paz
, Cristina Castro-Yuste
, Eduardo Sánchez-Sánchez
, Eulàlia Hernández i Encuentra, Maria Jesus Vinolo-Gil, Ines Carmona-Barrientos, Miriam Poza-Méndez
:
Self-management in heart failure using mHealth: A content validation. 104986
- Abdullah Shuab
, Michal Krakowiak
, Tomasz Szmuda:
The quality and reliability analysis of YouTube videos about insulin resistance. 104987
- Rajae Touzani
, Emilien Schultz
, Stéphanie Vandentorren, Pierre Arwidson, Francis Guillemin, Anne-Déborah Bouhnik
, Alexandra Rouquette
, Julien Mancini
:
Digital contact tracing during the COVID-19 pandemic in France: Associated factors and reasons for non-use. 104994 - Erika Jarva
, Anne Oikarinen
, J. Andersson
, Marco Tomietto
, Maria Kääriäinen
, Kristina Mikkonen:
Healthcare professionals' digital health competence and its core factors; development and psychometric testing of two instruments. 104995 - Shahab A. Abdulla
, Mohammed Diykh, Siuly Siuly, Mumtaz Ali
:
An intelligent model involving multi-channels spectrum patterns based features for automatic sleep stage classification. 105001

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.