


default search action
PKDD / ECML 2023: Turin, Italy - Part III
- Danai Koutra

, Claudia Plant
, Manuel Gomez Rodriguez
, Elena Baralis
, Francesco Bonchi
:
Machine Learning and Knowledge Discovery in Databases: Research Track - European Conference, ECML PKDD 2023, Turin, Italy, September 18-22, 2023, Proceedings, Part III. Lecture Notes in Computer Science 14171, Springer 2023, ISBN 978-3-031-43417-4
Graph Neural Networks
- Lirong Wu, Cheng Tan, Zihan Liu, Zhangyang Gao, Haitao Lin, Stan Z. Li:

Learning to Augment Graph Structure for both Homophily and Heterophily Graphs. 3-18 - Akshay Sethi, Sonia Gupta, Aakarsh Malhotra, Siddhartha Asthana:

Learning Representations for Bipartite Graphs Using Multi-task Self-supervised Learning. 19-35 - Piotr Gainski, Michal Koziarski, Jacek Tabor, Marek Smieja:

ChiENN: Embracing Molecular Chirality with Graph Neural Networks. 36-52 - Wenlan Kuang, Qiangxi Zhu, Zhixin Li:

Multi-label Image Classification with Multi-scale Global-Local Semantic Graph Network. 53-69 - Guixiang Cheng, Xin Yan, Shengxiang Gao, Guangyi Xu, Xianghua Miao:

CasSampling: Exploring Efficient Cascade Graph Learning for Popularity Prediction. 70-86 - Shaowei Wei, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou:

Boosting Adaptive Graph Augmented MLPs via Customized Knowledge Distillation. 87-103 - Yucheng Shi, Kaixiong Zhou, Ninghao Liu:

ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning. 104-121 - Wei Zhao, Federico López, J. Maxwell Riestenberg, Michael Strube, Diaaeldin Taha, Steve Trettel:

Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive Definite Matrices. 122-139 - Xugang Wu, Huijun Wu, Ruibo Wang, Duanyu Li, Xu Zhou, Kai Lu:

Leveraging Free Labels to Power up Heterophilic Graph Learning in Weakly-Supervised Settings: An Empirical Study. 140-156 - Costas Mavromatis, Vassilis N. Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun Ma, Han Zhao, Christos Faloutsos, George Karypis:

Train Your Own GNN Teacher: Graph-Aware Distillation on Textual Graphs. 157-173
Graphs
- Maximilian Stubbemann

, Gerd Stumme
:
The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks. 177-192 - Zuowu Zheng, Chao Wang, Xiaofeng Gao, Guihai Chen:

RBNets: A Reinforcement Learning Approach for Learning Bayesian Network Structure. 193-208 - Yuting Liang, Wen Bai, Yuncheng Jiang:

A Unified Spectral Rotation Framework Using a Fused Similarity Graph. 209-225 - Liping Yan

, Weiren Yu
:
SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search. 226-241 - Laura Toni, Pascal Frossard:

Online Network Source Optimization with Graph-Kernel MAB. 242-258 - Jakir Hossain, Sucheta Soundarajan, Ahmet Erdem Sariyüce:

Quantifying Node-Based Core Resilience. 259-276 - Adrian Horzyk

, Daniel Bulanda
, Janusz A. Starzyk
:
Construction and Training of Multi-Associative Graph Networks. 277-292 - Danylo Honcharov, Ahmet Erdem Sariyüce, Ricky Laishram, Sucheta Soundarajan:

Skeletal Cores and Graph Resilience. 293-308 - Abdullah Alchihabi, Yuhong Guo:

GDM: Dual Mixup for Graph Classification with Limited Supervision. 309-324 - Bosong Huang, Weihao Yu, Ruzhong Xie, Jing Xiao, Jin Huang:

Two-Stage Denoising Diffusion Model for Source Localization in Graph Inverse Problems. 325-340
Interpretability
- Shiyun Xu, Zhiqi Bu, Pratik Chaudhari, Ian J. Barnett:

Sparse Neural Additive Model: Interpretable Deep Learning with Feature Selection via Group Sparsity. 343-359 - Kentaro Kanamori:

Learning Locally Interpretable Rule Ensemble. 360-377 - Brigt Arve Toppe Håvardstun, Cèsar Ferri, José Hernández-Orallo, Pekka Parviainen, Jan Arne Telle:

XAI with Machine Teaching When Humans Are (Not) Informed About the Irrelevant Features. 378-393 - Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi, Alexandre Termier:

Generating Robust Counterfactual Explanations. 394-409 - Tathagata Raha, Mukund Choudhary

, Abhinav Menon, Harshit Gupta, KV Aditya Srivatsa, Manish Gupta, Vasudeva Varma:
Neural Models for Factual Inconsistency Classification with Explanations. 410-427 - Maximilian Muschalik

, Fabian Fumagalli
, Barbara Hammer
, Eyke Hüllermeier
:
iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams. 428-445 - Fereshteh Razmi, Jian Lou, Yuan Hong

, Li Xiong:
Interpretation Attacks and Defenses on Predictive Models Using Electronic Health Records. 446-461 - Sebastian Müller

, Vanessa Toborek
, Katharina Beckh
, Matthias Jakobs
, Christian Bauckhage
, Pascal Welke
:
An Empirical Evaluation of the Rashomon Effect in Explainable Machine Learning. 462-478 - Susanne Dandl

, Giuseppe Casalicchio
, Bernd Bischl
, Ludwig Bothmann
:
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations. 479-495 - Milan Bhan, Jean-Noël Vittaut

, Nicolas Chesneau, Marie-Jeanne Lesot:
TIGTEC: Token Importance Guided TExt Counterfactuals. 496-512
Knowledge Graphs
- Zicheng Zhao, Linhao Luo, Shirui Pan, Quoc Viet Hung Nguyen, Chen Gong:

Towards Few-Shot Inductive Link Prediction on Knowledge Graphs: A Relational Anonymous Walk-Guided Neural Process Approach. 515-532 - Julia Gastinger

, Timo Sztyler
, Lokesh Sharma
, Anett Schuelke, Heiner Stuckenschmidt
:
Comparing Apples and Oranges? On the Evaluation of Methods for Temporal Knowledge Graph Forecasting. 533-549 - Zifeng Ding, Jingpei Wu, Zongyue Li, Yunpu Ma, Volker Tresp:

Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs Using Confidence-Augmented Reinforcement Learning. 550-566 - Caglar Demir

, Axel-Cyrille Ngonga Ngomo
:
Clifford Embeddings - A Generalized Approach for Embedding in Normed Algebras. 567-582 - Zhaobo Zhang, Pingpeng Yuan, Hai Jin:

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection. 583-600 - Bowen Song, Chengjin Xu, Kossi Amouzouvi, Maocai Wang, Jens Lehmann, Sahar Vahdati:

Distinct Geometrical Representations for Temporal and Relational Structures in Knowledge Graphs. 601-616 - Caglar Demir

, Michel Wiebesiek, Renzhong Lu, Axel-Cyrille Ngonga Ngomo
, Stefan Heindorf
:
LitCQD: Multi-hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals. 617-633
Large-Scale Learning
- An Xu

, Yang Bai
:
Cross Model Parallelism for Faster Bidirectional Training of Large Convolutional Neural Networks. 637-653 - An Xu

, Yang Bai
:
Distributed Adaptive Optimization with Divisible Communication. 654-670 - Giambattista Amati, Antonio Cruciani

, Daniele Pasquini, Paola Vocca, Simone Angelini:
propagate: A Seed Propagation Framework to Compute Distance-Based Metrics on Very Large Graphs. 671-688 - Erik Schultheis

, Rohit Babbar
:
Towards Memory-Efficient Training for Extremely Large Output Spaces - Learning with 670k Labels on a Single Commodity GPU. 689-704

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














