


default search action
LLM4CODE@ICSE 2024: Lisbon, Portugal
- Proceedings of the 1st International Workshop on Large Language Models for Code, LLM4Code 2024, Lisbon, Portugal, 20 April 2024. ACM 2024, ISBN 979-8-4007-0579-3 [contents]
- Rudolf Ramler
, Michael Moser
, Lukas Fischer
, Markus Nissl
, René Heinzl
:
Industrial Experience Report on AI-Assisted Coding in Professional Software Development. 1-7 - Krerkkiat Chusap
, Chang Liu
:
Gauging Tech Community Acceptance of Rapid Prototyping in Unfamiliar Programming Languages using LLM Chatbots. 8-13 - Sanyogita Piya
, Allison Sullivan
:
LLM4TDD: Best Practices for Test Driven Development Using Large Language Models. 14-21 - Heiko Koziolek
, Sten Grüner
, Rhaban Hark
, Virendra Ashiwal
, Sofia Linsbauer
, Nafise Eskandani
:
LLM-based and Retrieval-Augmented Control Code Generation. 22-29 - Tina Vartziotis
, Ippolyti Dellatolas
, George Dasoulas
, Maximilian Schmidt
, Florian Schneider
, Tim Hoffmann
, Sotirios Kotsopoulos
, Michael Keckeisen
:
Learn to Code Sustainably: An Empirical Study on Green Code Generation. 30-37 - Heiko Koziolek
, Anne Koziolek
:
LLM-based Control Code Generation using Image Recognition. 38-45 - Shubham Gandhi
, Manasi Patwardhan
, Jyotsana Khatri
, Lovekesh Vig
, Raveendra Kumar Medicherla
:
Translation of Low-Resource COBOL to Logically Correct and Readable Java leveraging High-Resource Java Refinement. 46-53 - Shreya Bhatia
, Tarushi Gandhi
, Dhruv Kumar
, Pankaj Jalote
:
Unit Test Generation using Generative AI : A Comparative Performance Analysis of Autogeneration Tools. 54-61 - Kaiser Pister
, Dhruba Jyoti Paul
, Ishan Joshi
, Patrick Brophy
:
PromptSet: A Programmer's Prompting Dataset. 62-69 - Yichen Li
, Yun Peng
, Yintong Huo
, Michael R. Lyu
:
Enhancing LLM-Based Coding Tools through Native Integration of IDE-Derived Static Context. 70-74 - Shengbei Jiang
, Jiabao Zhang
, Wei Chen
, Bo Wang
, Jianyi Zhou
, Jie Zhang
:
Evaluating Fault Localization and Program Repair Capabilities of Existing Closed-Source General-Purpose LLMs. 75-78 - Haoxiang Fei
, Yu Zhang
, Hongbo Zhang
, Yanlin Wang
, Qing Liu
:
MoonBit: Explore the Design of an AI-Friendly Programming Language. 79-83 - Gábor Antal
, Richárd Vozár
, Rudolf Ferenc
:
Toward a New Era of Rapid Development: Assessing GPT-4-Vision's Capabilities in UML-Based Code Generation. 84-87 - Smitha S. Kumar
, Michael Adam Lones
, Manuel Maarek
, Hind Zantout
:
Investigating the Proficiency of Large Language Models in Formative Feedback Generation for Student Programmers. 88-93 - Adam Dingle
, Martin Krulis
:
Tackling Students' Coding Assignments with LLMs. 94-101 - Skyler Grandel
, Douglas C. Schmidt
, Kevin Leach
:
Applying Large Language Models to Enhance the Assessment of Parallel Functional Programming Assignments. 102-110 - Sanka Rasnayaka
, Guanlin Wang
, Ridwan Shariffdeen
, Ganesh Neelakanta Iyer
:
An Empirical Study on Usage and Perceptions of LLMs in a Software Engineering Project. 111-118 - Zhiming Li
, Yushi Cao
, Xiufeng Xu
, Junzhe Jiang
, Xu Liu
, Yon Shin Teo
, Shang-Wei Lin
, Yang Liu
:
LLMs for Relational Reasoning: How Far are We? 119-126 - Ananya Singha
, Bhavya Chopra
, Anirudh Khatry
, Sumit Gulwani
, Austin Z. Henley
, Vu Le
, Chris Parnin
, Mukul Singh
, Gust Verbruggen
:
Semantically Aligned Question and Code Generation for Automated Insight Generation. 127-134

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.