


default search action
8th WASSA@EMNLP 2017: Copenhagen, Denmark
- Alexandra Balahur, Saif M. Mohammad, Erik van der Goot:

Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA@EMNLP 2017, Copenhagen, Denmark, September 8, 2017. Association for Computational Linguistics 2017, ISBN 978-1-945626-95-1 - Aditya Joshi

:
Detecting Sarcasm Using Different Forms Of Incongruity. 1 - Jeremy Barnes, Roman Klinger

, Sabine Schulte im Walde:
Assessing State-of-the-Art Sentiment Models on State-of-the-Art Sentiment Datasets. 2-12 - Hendrik Schuff, Jeremy Barnes, Julian Mohme, Sebastian Padó

, Roman Klinger
:
Annotation, Modelling and Analysis of Fine-Grained Emotions on a Stance and Sentiment Detection Corpus. 13-23 - Matthias Hartung

, Roman Klinger
, Franziska Schmidtke, Lars Vogel:
Ranking Right-Wing Extremist Social Media Profiles by Similarity to Democratic and Extremist Groups. 24-33 - Saif M. Mohammad, Felipe Bravo-Marquez:

WASSA-2017 Shared Task on Emotion Intensity. 34-49 - Maximilian Köper, Evgeny Kim, Roman Klinger

:
IMS at EmoInt-2017: Emotion Intensity Prediction with Affective Norms, Automatically Extended Resources and Deep Learning. 50-57 - Prayas Jain, Pranav Goel, Devang Kulshreshtha, Kaushal Kumar Shukla:

Prayas at EmoInt 2017: An Ensemble of Deep Neural Architectures for Emotion Intensity Prediction in Tweets. 58-65 - Iryna Gurevych:

Latest News in Computational Argumentation: Surfing on the Deep Learning Wave, Scuba Diving in the Abyss of Fundamental Questions. 66 - David Vilares

, Marcos García, Miguel A. Alonso, Carlos Gómez-Rodríguez:
Towards Syntactic Iberian Polarity Classification. 67-73 - Filip Boltuzic, Jan Snajder:

Toward Stance Classification Based on Claim Microstructures. 74-80 - JiaQi Wu, Marilyn A. Walker, Pranav Anand, Steve Whittaker:

Linguistic Reflexes of Well-Being and Happiness in Echo. 81-91 - Viktor Pekar, Jane M. Binner

:
Forecasting Consumer Spending from Purchase Intentions Expressed on Social Media. 92-101 - Edison Marrese-Taylor, Jorge A. Balazs, Yutaka Matsuo:

Mining fine-grained opinions on closed captions of YouTube videos with an attention-RNN. 102-111 - Alexandra Balahur:

Understanding human values and their emotional effect. 112 - Rebeca Padilla López, Fabienne Cap:

Did you ever read about Frogs drinking Coffee? Investigating the Compositionality of Multi-Emoji Expressions. 113-117 - Giulia Donato, Patrizia Paggio:

Investigating Redundancy in Emoji Use: Study on a Twitter Based Corpus. 118-126 - Kishaloy Halder, Lahari Poddar, Min-Yen Kan:

Modeling Temporal Progression of Emotional Status in Mental Health Forum: A Recurrent Neural Net Approach. 127-135 - Orphée De Clercq, Els Lefever, Gilles Jacobs, Tijl Carpels, Véronique Hoste:

Towards an integrated pipeline for aspect-based sentiment analysis in various domains. 136-142 - Gaurav Mohanty, Abishek Kannan, Radhika Mamidi:

Building a SentiWordNet for Odia. 143-148 - Bonggun Shin, Timothy Lee, Jinho D. Choi:

Lexicon Integrated CNN Models with Attention for Sentiment Analysis. 149-158 - Leila Arras

, Grégoire Montavon, Klaus-Robert Müller, Wojciech Samek:
Explaining Recurrent Neural Network Predictions in Sentiment Analysis. 159-168 - Egor Lakomkin, Chandrakant Bothe, Stefan Wermter

:
GradAscent at EmoInt-2017: Character and Word Level Recurrent Neural Network Models for Tweet Emotion Intensity Detection. 169-174 - Vladimir Andryushechkin, Ian D. Wood, James O'Neill:

NUIG at EmoInt-2017: BiLSTM and SVR Ensemble to Detect Emotion Intensity. 175-179 - Athanasios Giannakopoulos, Claudiu Musat, Andreea Hossmann

, Michael Baeriswyl:
Unsupervised Aspect Term Extraction with B-LSTM & CRF using Automatically Labelled Datasets. 180-188 - Henrique D. P. dos Santos, Renata Vieira:

PLN-PUCRS at EmoInt-2017: Psycholinguistic features for emotion intensity prediction in tweets. 189-192 - Hardik Meisheri, Rupsa Saha

, Priyanka Sinha, Lipika Dey:
Textmining at EmoInt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of English Tweets. 193-199 - You Zhang, Hang Yuan, Jin Wang, Xuejie Zhang:

YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction. 200-204 - Venkatesh Duppada, Sushant Hiray:

Seernet at EmoInt-2017: Tweet Emotion Intensity Estimator. 205-211 - Md. Shad Akhtar, Palaash Sawant, Asif Ekbal, Jyoti D. Pawar, Pushpak Bhattacharyya:

IITP at EmoInt-2017: Measuring Intensity of Emotions using Sentence Embeddings and Optimized Features. 212-218 - Sreekanth Madisetty, Maunendra Sankar Desarkar:

NSEmo at EmoInt-2017: An Ensemble to Predict Emotion Intensity in Tweets. 219-224 - Antonio Moreno-Ortiz

:
Tecnolengua Lingmotif at EmoInt-2017: A lexicon-based approach. 225-232 - Edison Marrese-Taylor, Yutaka Matsuo:

EmoAtt at EmoInt-2017: Inner attention sentence embedding for Emotion Intensity. 233-237 - Yuanye He

, Liang-Chih Yu, K. Robert Lai, Weiyi Liu:
YZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model. 238-242 - Song Jiang, Xiaotian Han:

DMGroup at EmoInt-2017: Emotion Intensity Using Ensemble Method. 243-248 - Vineet John, Olga Vechtomova

:
UWat-Emote at EmoInt-2017: Emotion Intensity Detection using Affect Clues, Sentiment Polarity and Word Embeddings. 249-254 - Davide Buscaldi, Belém Priego Sánchez

:
LIPN-UAM at EmoInt-2017: Combination of Lexicon-based features and Sentence-level Vector Representations for Emotion Intensity Determination. 255-258 - R. Vinayakumar, B. Premjith, S. Sachin Kumar, K. P. Soman, Prabaharan Poornachandran:

deepCybErNet at EmoInt-2017: Deep Emotion Intensities in Tweets. 259-263

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














