default search action
Roman Klinger
Person information
- affiliation: University of Stuttgart, Institute for Natural Language Processing, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c83]Amelie Wührl, Dustin Wright, Roman Klinger, Isabelle Augenstein:
Understanding Fine-grained Distortions in Reports of Scientific Findings. ACL (Findings) 2024: 6175-6191 - [c82]Aswathy Velutharambath, Roman Klinger, Amelie Wührl:
Can Factual Statements Be Deceptive? The DeFaBel Corpus of Belief-based Deception. LREC/COLING 2024: 2708-2723 - [c81]Eileen Wemmer, Sofie Labat, Roman Klinger:
EmoProgress: Cumulated Emotion Progression Analysis in Dreams and Customer Service Dialogues. LREC/COLING 2024: 5660-5677 - [c80]Amelie Wührl, Yarik Menchaca Resendiz, Lara Grimminger, Roman Klinger:
What Makes Medical Claims (Un)Verifiable? Analyzing Entity and Relation Properties for Fact Verification. EACL (1) 2024: 2046-2058 - [c79]Christopher Bagdon, Prathamesh Karmalkar, Harsha Gurulingappa, Roman Klinger:
"You are an expert annotator": Automatic Best-Worst-Scaling Annotations for Emotion Intensity Modeling. NAACL-HLT 2024: 7924-7936 - [c78]Patrick Bareiß, Roman Klinger, Jeremy Barnes:
English Prompts are Better for NLI-based Zero-Shot Emotion Classification than Target-Language Prompts. WWW (Companion Volume) 2024: 1318-1326 - [i57]Amelie Wührl, Yarik Menchaca Resendiz, Lara Grimminger, Roman Klinger:
What Makes Medical Claims (Un)Verifiable? Analyzing Entity and Relation Properties for Fact Verification. CoRR abs/2402.01360 (2024) - [i56]Patrick Bareiß, Roman Klinger, Jeremy Barnes:
English Prompts are Better for NLI-based Zero-Shot Emotion Classification than Target-Language Prompts. CoRR abs/2402.03223 (2024) - [i55]Amelie Wührl, Dustin Wright, Roman Klinger, Isabelle Augenstein:
Understanding Fine-grained Distortions in Reports of Scientific Findings. CoRR abs/2402.12431 (2024) - [i54]Aswathy Velutharambath, Amelie Wührl, Roman Klinger:
Can Factual Statements be Deceptive? The DeFaBel Corpus of Belief-based Deception. CoRR abs/2403.10185 (2024) - [i53]Christopher Bagdon, Prathamesh Karmalkar, Harsha Gurulingappa, Roman Klinger:
"You are an expert annotator": Automatic Best-Worst-Scaling Annotations for Emotion Intensity Modeling. CoRR abs/2403.17612 (2024) - [i52]Egil Rønningstad, Roman Klinger, Erik Velldal, Lilja Øvrelid:
Entity-Level Sentiment: More than the Sum of Its Parts. CoRR abs/2407.03916 (2024) - 2023
- [j9]Enrica Troiano, Laura Oberländer, Roman Klinger:
Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation, Annotation Reliability, and Prediction. Comput. Linguistics 49(1): 1-72 (2023) - [j8]Enrica Troiano, Aswathy Velutharambath, Roman Klinger:
From theories on styles to their transfer in text: Bridging the gap with a hierarchical survey. Nat. Lang. Eng. 29(4): 849-908 (2023) - [c77]Yarik Menchaca Resendiz, Roman Klinger:
Affective Natural Language Generation of Event Descriptions through Fine-grained Appraisal Conditions. INLG 2023: 375-387 - [c76]Aswathy Velutharambath, Roman Klinger:
UNIDECOR: A Unified Deception Corpus for Cross-Corpus Deception Detection. WASSA@ACL 2023: 39-51 - [e4]Jeremy Barnes, Orphée De Clercq, Roman Klinger:
Proceedings of the 13th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis, WASSA@ACL 2023, Toronto, Canada, July 14, 2023. Association for Computational Linguistics 2023, ISBN 978-1-959429-87-6 [contents] - [i51]Amelie Wührl, Lara Grimminger, Roman Klinger:
An Entity-based Claim Extraction Pipeline for Real-world Biomedical Fact-checking. CoRR abs/2304.05268 (2023) - [i50]Maximilian Wegge, Roman Klinger:
Automatic Emotion Experiencer Recognition. CoRR abs/2305.16731 (2023) - [i49]Aswathy Velutharambath, Roman Klinger:
UNIDECOR: A Unified Deception Corpus for Cross-Corpus Deception Detection. CoRR abs/2306.02827 (2023) - [i48]Yarik Menchaca Resendiz, Roman Klinger:
Affective Natural Language Generation of Event Descriptions through Fine-grained Appraisal Conditions. CoRR abs/2307.14004 (2023) - [i47]Yarik Menchaca Resendiz, Roman Klinger:
Emotion-Conditioned Text Generation through Automatic Prompt Optimization. CoRR abs/2308.04857 (2023) - [i46]Roman Klinger:
Where are We in Event-centric Emotion Analysis? Bridging Emotion Role Labeling and Appraisal-based Approaches. CoRR abs/2309.02092 (2023) - [i45]Maximilian Wegge, Roman Klinger:
Topic Bias in Emotion Classification. CoRR abs/2312.09043 (2023) - 2022
- [c75]Amelie Wührl, Roman Klinger:
Entity-based Claim Representation Improves Fact-Checking of Medical Content in Tweets. ArgMining@COLING 2022: 187-198 - [c74]Flor Miriam Plaza del Arco, María Teresa Martín Valdivia, Roman Klinger:
Natural Language Inference Prompts for Zero-shot Emotion Classification in Text across Corpora. COLING 2022: 6805-6817 - [c73]Sean Papay, Roman Klinger, Sebastian Padó:
Constraining Linear-chain CRFs to Regular Languages. ICLR 2022 - [c72]Isabelle Mohr, Amelie Wührl, Roman Klinger:
CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets. LREC 2022: 244-257 - [c71]Enrica Troiano, Laura Oberländer, Maximilian Wegge, Roman Klinger:
x-enVENT: A Corpus of Event Descriptions with Experiencer-specific Emotion and Appraisal Annotations. LREC 2022: 1365-1375 - [c70]Amelie Wührl, Roman Klinger:
Recovering Patient Journeys: A Corpus of Biomedical Entities and Relations on Twitter (BEAR). LREC 2022: 4439-4450 - [c69]Emils Kadikis, Vaibhav Srivastav, Roman Klinger:
Embarrassingly Simple Performance Prediction for Abductive Natural Language Inference. NAACL-HLT 2022: 6031-6037 - [c68]Anna Khlyzova, Carina Silberer, Roman Klinger:
On the Complementarity of Images and Text for the Expression of Emotions in Social Media. WASSA@ACL 2022: 1-15 - [c67]Valentino Sabbatino, Enrica Troiano, Antje Schweitzer, Roman Klinger:
"splink" is happy and "phrouth" is scary: Emotion Intensity Analysis for Nonsense Words. WASSA@ACL 2022: 37-50 - [c66]Anne Kreuter, Kai Sassenberg, Roman Klinger:
Items from Psychometric Tests as Training Data for Personality Profiling Models of Twitter Users. WASSA@ACL 2022: 315-323 - [e3]Jeremy Barnes, Orphée De Clercq, Valentin Barrière, Shabnam Tafreshi, Sawsan Alqahtani, João Sedoc, Roman Klinger, Alexandra Balahur:
Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis, WASSA@ACL 2022, Dublin, Ireland, May 26, 2022. Association for Computational Linguistics 2022, ISBN 978-1-955917-52-0 [contents] - [i44]Anna Khlyzova, Carina Silberer, Roman Klinger:
On the Complementarity of Images and Text for the Expression of Emotions in Social Media. CoRR abs/2202.07427 (2022) - [i43]Emils Kadikis, Vaibhav Srivastav, Roman Klinger:
Embarrassingly Simple Performance Prediction for Abductive Natural Language Inference. CoRR abs/2202.10408 (2022) - [i42]Anne Kreuter, Kai Sassenberg, Roman Klinger:
Items from Psychometric Tests as Training Data for Personality Profiling Models of Twitter Users. CoRR abs/2202.10415 (2022) - [i41]Valentino Sabbatino, Enrica Troiano, Antje Schweitzer, Roman Klinger:
"splink" is happy and "phrouth" is scary: Emotion Intensity Analysis for Nonsense Words. CoRR abs/2202.12132 (2022) - [i40]Enrica Troiano, Laura Oberländer, Maximilian Wegge, Roman Klinger:
x-enVENT: A Corpus of Event Descriptions with Experiencer-specific Emotion and Appraisal Annotations. CoRR abs/2203.10909 (2022) - [i39]Amelie Wührl, Roman Klinger:
Recovering Patient Journeys: A Corpus of Biomedical Entities and Relations on Twitter (BEAR). CoRR abs/2204.09952 (2022) - [i38]Isabelle Mohr, Amelie Wührl, Roman Klinger:
CoVERT: A Corpus of Fact-checked Biomedical COVID-19 Tweets. CoRR abs/2204.12164 (2022) - [i37]Enrica Troiano, Laura Oberländer, Roman Klinger:
Dimensional Modeling of Emotions in Text with Appraisal Theories: Corpus Creation, Annotation Reliability, and Prediction. CoRR abs/2206.05238 (2022) - [i36]Flor Miriam Plaza del Arco, María Teresa Martín Valdivia, Roman Klinger:
Natural Language Inference Prompts for Zero-shot Emotion Classification in Text across Corpora. CoRR abs/2209.06701 (2022) - [i35]Amelie Wührl, Roman Klinger:
Entity-based Claim Representation Improves Fact-Checking of Medical Content in Tweets. CoRR abs/2209.07834 (2022) - [i34]Maximilian Wegge, Enrica Troiano, Laura Oberländer, Roman Klinger:
Experiencer-Specific Emotion and Appraisal Prediction. CoRR abs/2210.12078 (2022) - 2021
- [c65]Amelie Wührl, Roman Klinger:
Claim Detection in Biomedical Twitter Posts. BioNLP@NAACL-HLT 2021: 131-142 - [c64]Flor Miriam Plaza del Arco, Sercan Halat, Sebastian Padó, Roman Klinger:
Multi-Task Learning with Sentiment Emotion and Target Detection to Recognize Hate Speech and Offensive Language. FIRE (Working Notes) 2021: 297-318 - [c63]Enrica Troiano, Sebastian Padó, Roman Klinger:
Emotion Ratings: How Intensity, Annotation Confidence and Agreements are Entangled. WASSA@EACL 2021: 40-49 - [c62]Jan Hofmann, Enrica Troiano, Roman Klinger:
Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations. WASSA@EACL 2021: 160-170 - [c61]Lara Grimminger, Roman Klinger:
Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elections on the Basis of Offensive Speech and Stance Detection. WASSA@EACL 2021: 171-180 - [i33]Jan Hofmann, Enrica Troiano, Roman Klinger:
Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations. CoRR abs/2102.12858 (2021) - [i32]Lara Grimminger, Roman Klinger:
Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elections on the Basis of Offensive Speech and Stance Detection. CoRR abs/2103.01664 (2021) - [i31]Enrica Troiano, Sebastian Padó, Roman Klinger:
Emotion Ratings: How Intensity, Annotation Confidence and Agreements are Entangled. CoRR abs/2103.01667 (2021) - [i30]Amelie Wührl, Roman Klinger:
Claim Detection in Biomedical Twitter Posts. CoRR abs/2104.11639 (2021) - [i29]Sean Papay, Roman Klinger, Sebastian Padó:
Constraining Linear-chain CRFs to Regular Languages. CoRR abs/2106.07306 (2021) - [i28]Felix Casel, Amelie Heindl, Roman Klinger:
Emotion Recognition under Consideration of the Emotion Component Process Model. CoRR abs/2107.12895 (2021) - [i27]Bao Minh Doan Dang, Laura Oberländer, Roman Klinger:
Emotion Stimulus Detection in German News Headlines. CoRR abs/2107.12920 (2021) - [i26]Flor Miriam Plaza del Arco, Sercan Halat, Sebastian Padó, Roman Klinger:
Multi-Task Learning with Sentiment, Emotion, and Target Detection to Recognize Hate Speech and Offensive Language. CoRR abs/2109.10255 (2021) - [i25]Enrica Troiano, Aswathy Velutharambath, Roman Klinger:
From Theories on Styles to their Transfer in Text: Bridging the Gap with a Hierarchical Survey. CoRR abs/2110.15871 (2021) - 2020
- [b2]Roman Klinger:
Strukturierte Modellierung von Affekt in Text. University of Stuttgart, Germany, 2020 - [j7]Hendrik ter Horst, Matthias Hartung, Philipp Cimiano, Nicole Brazda, Hans Werner Müller, Roman Klinger:
Learning soft domain constraints in a factor graph model for template-based information extraction. Data Knowl. Eng. 125: 101764 (2020) - [c60]David Helbig, Enrica Troiano, Roman Klinger:
Challenges in Emotion Style Transfer: An Exploration with a Lexical Substitution Pipeline. SocialNLP@ACL 2020: 41-50 - [c59]Jan Hofmann, Enrica Troiano, Kai Sassenberg, Roman Klinger:
Appraisal Theories for Emotion Classification in Text. COLING 2020: 125-138 - [c58]Enrica Troiano, Roman Klinger, Sebastian Padó:
Lost in Back-Translation: Emotion Preservation in Neural Machine Translation. COLING 2020: 4340-4354 - [c57]Sean Papay, Roman Klinger, Sebastian Padó:
Dissecting Span Identification Tasks with Performance Prediction. EMNLP (1) 2020: 4881-4895 - [c56]Valentino Sabbatino, Laura Ana Maria Bostan, Roman Klinger:
Automatic Section Recognition in Obituaries. LREC 2020: 817-825 - [c55]Laura Ana Maria Bostan, Evgeny Kim, Roman Klinger:
GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception. LREC 2020: 1554-1566 - [c54]Thomas N. Haider, Steffen Eger, Evgeny Kim, Roman Klinger, Winfried Menninghaus:
PO-EMO: Conceptualization, Annotation, and Modeling of Aesthetic Emotions in German and English Poetry. LREC 2020: 1652-1663 - [c53]Laura Ana Maria Bostan, Roman Klinger:
Token Sequence Labeling vs. Clause Classification for English Emotion Stimulus Detection. *SEM@COLING 2020: 58-70 - [i24]Valentino Sabbatino, Laura Ana Maria Bostan, Roman Klinger:
Automatic Section Recognition in Obituaries. CoRR abs/2002.12699 (2020) - [i23]Thomas N. Haider, Steffen Eger, Evgeny Kim, Roman Klinger, Winfried Menninghaus:
PO-EMO: Conceptualization, Annotation, and Modeling of Aesthetic Emotions in German and English Poetry. CoRR abs/2003.07723 (2020) - [i22]Jan Hofmann, Enrica Troiano, Kai Sassenberg, Roman Klinger:
Appraisal Theories for Emotion Classification in Text. CoRR abs/2003.14155 (2020) - [i21]David Helbig, Enrica Troiano, Roman Klinger:
Challenges in Emotion Style Transfer: An Exploration with a Lexical Substitution Pipeline. CoRR abs/2005.07617 (2020) - [i20]Sean Papay, Roman Klinger, Sebastian Padó:
Dissecting Span Identification Tasks with Performance Prediction. CoRR abs/2010.02587 (2020) - [i19]Laura Oberländer, Roman Klinger:
Token Sequence Labeling vs. Clause Classification for English Emotion Stimulus Detection. CoRR abs/2010.07557 (2020) - [i18]Laura Oberländer, Kevin Reich, Roman Klinger:
Experiencers, Stimuli, or Targets: Which Semantic Roles Enable Machine Learning to Infer the Emotions? CoRR abs/2011.01599 (2020)
2010 – 2019
- 2019
- [j6]Jeremy Barnes, Roman Klinger:
Embedding Projection for Targeted Cross-lingual Sentiment: Model Comparisons and a Real-World Study. J. Artif. Intell. Res. 66: 691-742 (2019) - [c52]Enrica Troiano, Sebastian Padó, Roman Klinger:
Crowdsourcing and Validating Event-focused Emotion Corpora for German and English. ACL (1) 2019: 4005-4011 - [c51]Deniz Cevher, Sebastian Zepf, Roman Klinger:
Towards Multimodal Emotion Recognition in German Speech Events in Cars using Transfer Learning. KONVENS 2019 - [c50]Evgeny Kim, Roman Klinger:
Frowning Frodo, Wincing Leia, and a Seriously Great Friendship: Learning to Classify Emotional Relationships of Fictional Characters. NAACL-HLT (1) 2019: 647-653 - [c49]Robert McHardy, Heike Adel, Roman Klinger:
Adversarial Training for Satire Detection: Controlling for Confounding Variables. NAACL-HLT (1) 2019: 660-665 - [c48]Laura Ana Maria Bostan, Roman Klinger:
Exploring Fine-Tuned Embeddings that Model Intensifiers for Emotion Analysis. WASSA@NAACL-HLT 2019: 25-34 - [e2]Alexandra Balahur, Roman Klinger, Véronique Hoste, Carlo Strapparava, Orphée De Clercq:
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA@NAACL-HLT 2019, Minneapolis, USA, June 6, 2019. Association for Computational Linguistics 2019 [contents] - [i17]Robert McHardy, Heike Adel, Roman Klinger:
Adversarial Training for Satire Detection: Controlling for Confounding Variables. CoRR abs/1902.11145 (2019) - [i16]Evgeny Kim, Roman Klinger:
Frowning Frodo, Wincing Leia, and a Seriously Great Friendship: Learning to Classify Emotional Relationships of Fictional Characters. CoRR abs/1903.12453 (2019) - [i15]Laura Ana Maria Bostan, Roman Klinger:
Exploring Fine-Tuned Embeddings that Model Intensifiers for Emotion Analysis. CoRR abs/1904.03164 (2019) - [i14]Enrica Troiano, Sebastian Padó, Roman Klinger:
Crowdsourcing and Validating Event-focused Emotion Corpora for German and English. CoRR abs/1905.13618 (2019) - [i13]Evgeny Kim, Roman Klinger:
An Analysis of Emotion Communication Channels in Fan Fiction: Towards Emotional Storytelling. CoRR abs/1906.02402 (2019) - [i12]Jeremy Barnes, Roman Klinger:
Embedding Projection for Targeted Cross-Lingual Sentiment: Model Comparisons and a Real-World Study. CoRR abs/1906.10519 (2019) - [i11]Deniz Cevher, Sebastian Zepf, Roman Klinger:
Towards Multimodal Emotion Recognition in German Speech Events in Cars using Transfer Learning. CoRR abs/1909.02764 (2019) - [i10]Laura Ana Maria Bostan, Evgeny Kim, Roman Klinger:
GoodNewsEveryone: A Corpus of News Headlines Annotated with Emotions, Semantic Roles, and Reader Perception. CoRR abs/1912.03184 (2019) - 2018
- [j5]Hanna Kicherer, Marcel Dittrich, Lukas Grebe, Christian Scheible, Roman Klinger:
What you use, not what you do: Automatic classification and similarity detection of recipes. Data Knowl. Eng. 117: 252-263 (2018) - [c47]Matthias Hartung, Hendrik ter Horst, Frank Grimm, Tim Diekmann, Roman Klinger, Philipp Cimiano:
SANTO: A Web-based Annotation Tool for Ontology-driven Slot Filling. ACL (4) 2018: 68-73 - [c46]Jeremy Barnes, Roman Klinger, Sabine Schulte im Walde:
Bilingual Sentiment Embeddings: Joint Projection of Sentiment Across Languages. ACL (1) 2018: 2483-2493 - [c45]Jeremy Barnes, Roman Klinger, Sabine Schulte im Walde:
Projecting Embeddings for Domain Adaption: Joint Modeling of Sentiment Analysis in Diverse Domains. COLING 2018: 818-830 - [c44]Evgeny Kim, Roman Klinger:
Who Feels What and Why? Annotation of a Literature Corpus with Semantic Roles of Emotions. COLING 2018: 1345-1359 - [c43]Laura Ana Maria Bostan, Roman Klinger:
An Analysis of Annotated Corpora for Emotion Classification in Text. COLING 2018: 2104-2119 - [c42]Florian Barth, Evgeny Kim, Sandra Murr, Roman Klinger:
A Reporting Tool for Relational Visualization and Analysis of Character Mentions in Literature. DHd 2018 - [c41]Manuel Braun, Roman Klinger, Sebastian Padó, Gabriel Viehhauser:
Digitale Modellierung von Figurenkomplexität am Beispiel des Parzival von Wolfram von Eschenbach. DHd 2018 - [c40]Florian Strohm, Roman Klinger:
An Empirical Analysis of the Role of Amplifiers, Downtoners, and Negations in Emotion Classification in Microblogs. DSAA 2018: 673-681 - [c39]Heike Adel, Laura Ana Maria Bostan, Sean Papay, Sebastian Padó, Roman Klinger:
DERE: A Task and Domain-Independent Slot Filling Framework for Declarative Relation Extraction. EMNLP (Demonstration) 2018: 42-47 - [c38]Hendrik ter Horst, Matthias Hartung, Roman Klinger, Nicole Brazda, Hans Werner Müller, Philipp Cimiano:
Assessing the Impact of Single and Pairwise Slot Constraints in a Factor Graph Model for Template-Based Information Extraction. NLDB 2018: 179-190 - [c37]Camilo Thorne, Roman Klinger:
On the Semantic Similarity of Disease Mentions in MEDLINE and Twitter. NLDB 2018: 324-332 - [c36]Roman Klinger, Orphée De Clercq, Saif M. Mohammad, Alexandra Balahur:
IEST: WASSA-2018 Implicit Emotions Shared Task. WASSA@EMNLP 2018: 31-42 - [e1]Alexandra Balahur, Saif M. Mohammad, Véronique Hoste, Roman Klinger:
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA@EMNLP 2018, Brussels, Belgium, October 31, 2018. Association for Computational Linguistics 2018, ISBN 978-1-948087-80-3 [contents] - [i9]Jeremy Barnes, Roman Klinger, Sabine Schulte im Walde:
Bilingual Sentiment Embeddings: Joint Projection of Sentiment Across Languages. CoRR abs/1805.09016 (2018) - [i8]Jeremy Barnes, Roman Klinger, Sabine Schulte im Walde:
Projecting Embeddings for Domain Adaptation: Joint Modeling of Sentiment Analysis in Diverse Domains. CoRR abs/1806.04381 (2018) - [i7]Evgeny Kim, Roman Klinger:
A Survey on Sentiment and Emotion Analysis for Computational Literary Studies. CoRR abs/1808.03137 (2018) - [i6]Florian Strohm, Roman Klinger:
An Empirical Analysis of the Role of Amplifiers, Downtoners, and Negations in Emotion Classification in Microblogs. CoRR abs/1808.10653 (2018) - [i5]Roman Klinger, Orphée De Clercq, Saif M. Mohammad, Alexandra Balahur:
IEST: WASSA-2018 Implicit Emotions Shared Task. CoRR abs/1809.01083 (2018) - 2017
- [c35]Evgeny Kim, Sebastian Padó, Roman Klinger:
Prototypical Emotion Developments in Adventures, Romances, and Mystery Stories. DH 2017 - [c34]Nils Reiter, Sarah Schulz, Gerhard Kremer, Roman Klinger, Gabriel Viehhauser, Jonas Kuhn:
Teaching Computational Aspects in the Digital Humanities Program at University of Stuttgart - Intentions and Experiences. Teach4DH@GSCL 2017: 43-48 - [c33]Nicole Brazda, Hendrik ter Horst, Matthias Hartung, Cord Wiljes, Veronica Estrada, Roman Klinger, Wolfgang Kuchinke, Hans Werner Müller, Philipp Cimiano:
SCIO: An Ontology to Support the Formalization of Pre-Clinical Spinal Cord Injury Experiments. JOWO 2017 - [c32]Evgeny Kim, Sebastian Padó, Roman Klinger:
Investigating the Relationship between Literary Genres and Emotional Plot Development. LaTeCH@ACL 2017: 17-26 - [c31]Mario Sänger, Ulf Leser, Roman Klinger:
Fine-Grained Opinion Mining from Mobile App Reviews with Word Embedding Features. NLDB 2017: 3-14 - [c30]Hanna Kicherer, Marcel Dittrich, Lukas Grebe, Christian Scheible, Roman Klinger:
What You Use, Not What You Do: Automatic Classification of Recipes. NLDB 2017: 197-209 - [c29]Roman Klinger:
Does Optical Character Recognition and Caption Generation Improve Emotion Detection in Microblog Posts? NLDB 2017: 313-319 - [c28]Matthias Hartung, Roman Klinger, Franziska Schmidtke, Lars Vogel:
Identifying Right-Wing Extremism in German Twitter Profiles: A Classification Approach. NLDB 2017: 320-325 - [c27]