


default search action
16th PKDD / 23rd ECML 2012: Bristol, UK
- Peter A. Flach

, Tijl De Bie, Nello Cristianini:
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings, Part I. Lecture Notes in Computer Science 7523, Springer 2012, ISBN 978-3-642-33459-7
Invited Talks
- Pieter Abbeel:

Machine Learning for Robotics. 1 - Luc De Raedt

:
Declarative Modeling for Machine Learning and Data Mining. 2-3 - Douglas Eck:

Machine Learning Methods for Music Discovery and Recommendation. 4 - Daniel A. Keim:

Solving Problems with Visual Analytics: Challenges and Applications. 5-6 - Padhraic Smyth:

Analyzing Text and Social Network Data with Probabilistic Models. 7-8
Association Rules and Frequent Patterns
- Nikolaj Tatti

, Jilles Vreeken
:
Discovering Descriptive Tile Trees - By Mining Optimal Geometric Subtiles. 9-24 - Matteo Riondato

, Eli Upfal
:
Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees. 25-41 - Arno Siebes, René Kersten:

Smoothing Categorical Data. 42-57
Bayesian Learning and Graphical Models
- Maxime Gasse

, Alex Aussem, Haytham Elghazel:
An Experimental Comparison of Hybrid Algorithms for Bayesian Network Structure Learning. 58-73 - Sebastian Tschiatschek, Peter Reinprecht, Manfred Mücke

, Franz Pernkopf
:
Bayesian Network Classifiers with Reduced Precision Parameters. 74-89 - Tivadar Papai, Shalini Ghosh, Henry A. Kautz

:
Combining Subjective Probabilities and Data in Training Markov Logic Networks. 90-105 - Shengbo Guo, Scott Sanner, Thore Graepel, Wray L. Buntine

:
Score-Based Bayesian Skill Learning. 106-121
Classification
- Ürün Dogan, Tobias Glasmachers, Christian Igel:

A Note on Extending Generalization Bounds for Binary Large-Margin Classifiers to Multiple Classes. 122-129 - Amin Mantrach, Jean-Michel Renders:

Extension of the Rocchio Classification Method to Multi-modal Categorization of Documents in Social Media. 130-142 - Jakramate Bootkrajang

, Ata Kabán:
Label-Noise Robust Logistic Regression and Its Applications. 143-158 - Dmitriy Bespalov, Yanjun Qi, Bing Bai, Ali Shokoufandeh:

Sentiment Classification with Supervised Sequence Embedding. 159-174 - Stefan Edelkamp, Martin Stommel:

The Bitvector Machine: A Fast and Robust Machine Learning Algorithm for Non-linear Problems. 175-190
Dimensionality Reduction, Feature Selection and Extraction
- Francis Maes, Pierre Geurts, Louis Wehenkel

:
Embedding Monte Carlo Search of Features in Tree-Based Ensemble Methods. 191-206 - Zhihong Zhang, Edwin R. Hancock

, Xiao Bai:
Hypergraph Spectra for Semi-supervised Feature Selection. 207-222 - Jun Wang, Adam Woznica, Alexandros Kalousis:

Learning Neighborhoods for Metric Learning. 223-236 - Zheng Zhao, James Cox, David Duling, Warren Sarle:

Massively Parallel Feature Selection: An Approach Based on Variance Preservation. 237-252 - Dimitrios Mavroeidis, Lejla Batina, Twan van Laarhoven, Elena Marchiori:

PCA, Eigenvector Localization and Clustering for Side-Channel Attacks on Cryptographic Hardware Devices. 253-268
Distance-Based Methods and Kernels
- Xianglilan Zhang, Hongnan Wang, Tony J. Collins, Zhigang Luo, Ming Li:

Classifying Stem Cell Differentiation Images by Information Distance. 269-282 - Qiong Cao, Yiming Ying

, Peng Li:
Distance Metric Learning Revisited. 283-298 - Nicolas Courty, Thomas Burger

, Pierre-François Marteau:
Geodesic Analysis on the Gaussian RKHS Hypersphere. 299-313
Ensemble Methods
- Roberto D'Ambrosio, Richard Nock, Wafa Bel Haj Ali, Frank Nielsen

, Michel Barlaud:
Boosting Nearest Neighbors for the Efficient Estimation of Posteriors. 314-329 - Nan Li, Yang Yu, Zhi-Hua Zhou:

Diversity Regularized Ensemble Pruning. 330-345 - Gilles Louppe

, Pierre Geurts:
Ensembles on Random Patches. 346-361
Graph and Tree Mining
- Yuyi Wang, Jan Ramon:

An Efficiently Computable Support Measure for Frequent Subgraph Pattern Mining. 362-377 - Marion Neumann, Novi Patricia, Roman Garnett, Kristian Kersting:

Efficient Graph Kernels by Randomization. 378-393 - Fabien Diot, Élisa Fromont, Baptiste Jeudy, Emmanuel Marilly, Olivier Martinot:

Graph Mining for Object Tracking in Videos. 394-409 - Li Pu, Boi Faltings:

Hypergraph Learning with Hyperedge Expansion. 410-425 - Ashraf M. Kibriya

, Jan Ramon:
Nearly Exact Mining of Frequent Trees in Large Networks. 426-441 - Kathy Macropol, Ambuj K. Singh:

Reachability Analysis and Modeling of Dynamic Event Networks. 442-457
Large-Scale, Distributed and Parallel Mining and Learning
- Thomas Seidl

, Brigitte Boden, Sergej Fries:
CC-MR - Finding Connected Components in Huge Graphs with MapReduce. 458-473 - Anshumali Shrivastava, Ping Li:

Fast Near Neighbor Search in High-Dimensional Binary Data. 474-489 - Khoat Than

, Tu Bao Ho:
Fully Sparse Topic Models. 490-505 - Moustapha Cissé, Thierry Artières

, Patrick Gallinari:
Learning Compact Class Codes for Fast Inference in Large Multi Class Classification. 506-520 - Evangelos E. Papalexakis

, Christos Faloutsos
, Nicholas D. Sidiropoulos
:
ParCube: Sparse Parallelizable Tensor Decompositions. 521-536 - Qing Tao, Kang Kong, Dejun Chu, Gao-wei Wu:

Stochastic Coordinate Descent Methods for Regularized Smooth and Nonsmooth Losses. 537-552 - Haoruo Peng, Zhengyu Wang, Edward Y. Chang, Shuchang Zhou, Zhihua Zhang:

Sublinear Algorithms for Penalized Logistic Regression in Massive Datasets. 553-568
Multi-Relational Mining and Learning
- Shaohua Li, Gao Cong

, Chunyan Miao
:
Author Name Disambiguation Using a New Categorical Distribution Similarity. 569-584 - Babak Ahmadi, Kristian Kersting, Sriraam Natarajan:

Lifted Online Training of Relational Models with Stochastic Gradient Methods. 585-600 - Xueyan Jiang, Volker Tresp, Yi Huang, Maximilian Nickel

, Hans-Peter Kriegel:
Scalable Relation Prediction Exploiting Both Intrarelational Correlation and Contextual Information. 601-616 - Houssam Nassif, Vítor Santos Costa

, Elizabeth S. Burnside
, David Page:
Relational Differential Prediction. 617-632
Multi-Task Learning
- Christian Widmer, Marius Kloft, Nico Görnitz, Gunnar Rätsch

:
Efficient Training of Graph-Regularized Multitask SVMs. 633-647 - Peipei Yang, Kaizhu Huang

, Cheng-Lin Liu:
Geometry Preserving Multi-task Metric Learning. 648-664 - Abhishek Kumar, Shankar Vembu, Aditya Krishna Menon, Charles Elkan:

Learning and Inference in Probabilistic Classifier Chains with Beam Search. 665-680 - Jean Baptiste Faddoul, Boris Chidlovskii, Rémi Gilleron, Fabien Torre

:
Learning Multiple Tasks with Boosted Decision Trees. 681-696 - Yu Zhang

, Dit-Yan Yeung:
Multi-Task Boosting by Exploiting Task Relationships. 697-710 - Yuyang Wang, Roni Khardon:

Sparse Gaussian Processes for Multi-task Learning. 711-727
Natural Language Processing
- Peter Klügl, Martin Toepfer, Florian Lemmerich, Andreas Hotho, Frank Puppe:

Collective Information Extraction with Context-Specific Consistencies. 728-743 - Ran El-Yaniv, David Yanay:

Supervised Learning of Semantic Relatedness. 744-759 - Gregory Dubbin, Phil Blunsom:

Unsupervised Bayesian Part of Speech Inference with Particle Gibbs. 760-773 - Subhabrata Mukherjee, Pushpak Bhattacharyya:

WikiSent: Weakly Supervised Sentiment Analysis through Extractive Summarization with Wikipedia. 774-793
Online Learning and Data Streams
- Tam T. Nguyen, Kuiyu Chang, Siu Cheung Hui:

Adaptive Two-View Online Learning for Math Topic Classification. 794-809 - Peilin Zhao, Steven C. H. Hoi

:
BDUOL: Double Updating Online Learning on a Fixed Budget. 810-826 - Petr Kosina

, João Gama
:
Handling Time Changing Data with Adaptive Very Fast Decision Rules. 827-842 - Konstantin Kutzkov

:
Improved Counter Based Algorithms for Frequent Pairs Mining in Transactional Data Streams. 843-858 - Gautam Kunapuli, Jude W. Shavlik:

Mirror Descent for Metric Learning: A Unified Approach. 859-874

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














