default search action
Stefano Teso
Person information
- affiliation: University of Trento, Italy
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Books and Theses
- 2013
- [b1]Stefano Teso:
Statistical Relational Learning for Proteomics: Function, Interactions and Evolution. University of Trento, Italy, 2013
Journal Articles
- 2024
- [j16]Giovanni De Toni, Paolo Viappiani, Stefano Teso, Bruno Lepri, Andrea Passerini:
Personalized Algorithmic Recourse with Preference Elicitation. Trans. Mach. Learn. Res. 2024 (2024) - 2023
- [j15]Mohit Kumar, Samuel Kolb, Stefano Teso, Luc De Raedt:
Learning MAX-SAT from contextual examples for combinatorial optimisation. Artif. Intell. 314: 103794 (2023) - [j14]Emanuele Marconato, Andrea Passerini, Stefano Teso:
Interpretability Is in the Mind of the Beholder: A Causal Framework for Human-Interpretable Representation Learning. Entropy 25(12): 1574 (2023) - [j13]Stefano Teso, Öznur Alkan, Wolfgang Stammer, Elizabeth Daly:
Leveraging explanations in interactive machine learning: An overview. Frontiers Artif. Intell. 6 (2023) - 2022
- [j12]Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini, Stefano Teso:
Human-in-the-loop handling of knowledge drift. Data Min. Knowl. Discov. 36(5): 1865-1884 (2022) - 2021
- [j11]Paolo Campigotto, Stefano Teso, Roberto Battiti, Andrea Passerini:
Learning Modulo Theories for constructive preference elicitation. Artif. Intell. 295: 103454 (2021) - [j10]Wanyi Zhang, Qiang Shen, Stefano Teso, Bruno Lepri, Andrea Passerini, Ivano Bison, Fausto Giunchiglia:
Putting human behavior predictability in context. EPJ Data Sci. 10(1): 42 (2021) - 2020
- [j9]Stefano Teso, Oliver Hinz:
Challenges in Interactive Machine Learning. Künstliche Intell. 34(2): 127-130 (2020) - [j8]Samuel Kolb, Stefano Teso, Anton Dries, Luc De Raedt:
Predictive spreadsheet autocompletion with constraints. Mach. Learn. 109(2): 307-325 (2020) - [j7]Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Franziska Herbert, Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, Kristian Kersting:
Making deep neural networks right for the right scientific reasons by interacting with their explanations. Nat. Mach. Intell. 2(8): 476-486 (2020) - 2019
- [j6]Stefano Teso, Luca Masera, Michelangelo Diligenti, Andrea Passerini:
Combining learning and constraints for genome-wide protein annotation. BMC Bioinform. 20(1): 338:1-338:14 (2019) - 2017
- [j5]Stefano Teso, Roberto Sebastiani, Andrea Passerini:
Structured learning modulo theories. Artif. Intell. 244: 166-187 (2017) - [j4]Paolo Dragone, Stefano Teso, Andrea Passerini:
Constructive Preference Elicitation. Frontiers Robotics AI 4: 71 (2017) - 2014
- [j3]Stefano Teso, Andrea Passerini:
Joint probabilistic-logical refinement of multiple protein feature predictors. BMC Bioinform. 15: 16 (2014) - [j2]Claudio Saccà, Stefano Teso, Michelangelo Diligenti, Andrea Passerini:
Improved multi-level protein¿protein interaction prediction with semantic-based regularization. BMC Bioinform. 15: 103 (2014) - [j1]Elisa Cilia, Stefano Teso, Sergio Ammendola, Tom Lenaerts, Andrea Passerini:
Predicting virus mutations through statistical relational learning. BMC Bioinform. 15: 309 (2014)
Conference and Workshop Papers
- 2023
- [c41]Andrea Bontempelli, Stefano Teso, Katya Tentori, Fausto Giunchiglia, Andrea Passerini:
Concept-level Debugging of Part-Prototype Networks. ICLR 2023 - [c40]Emanuele Marconato, Gianpaolo Bontempo, Elisa Ficarra, Simone Calderara, Andrea Passerini, Stefano Teso:
Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal. ICML 2023: 23915-23936 - [c39]Emanuele Marconato, Stefano Teso, Andrea Passerini:
Neuro-Symbolic Reasoning Shortcuts: Mitigation Strategies and their Limitations. NeSy 2023: 162-166 - [c38]Emanuele Marconato, Andrea Passerini, Stefano Teso:
GlanceNets: Interpretable, Leak-proof Concept-based Models. NeSy 2023: 410 - [c37]Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, Antonio Vergari:
Semantic Probabilistic Layers for Neuro-Symbolic Learning. NeSy 2023: 413 - [c36]Emanuele Marconato, Stefano Teso, Antonio Vergari, Andrea Passerini:
Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts. NeurIPS 2023 - 2022
- [c35]Ivan Donadello, Anthony Hunter, Stefano Teso, Mauro Dragoni:
Machine Learning for Utility Prediction in Argument-Based Computational Persuasion. AAAI 2022: 5592-5599 - [c34]Emanuele Marconato, Gianpaolo Bontempo, Stefano Teso, Elisa Ficarra, Simone Calderara, Andrea Passerini:
Catastrophic Forgetting in Continual Concept Bottleneck Models. ICIAP Workshops 2022: 539-547 - [c33]Qiang Shen, Haotian Feng, Rui Song, Stefano Teso, Fausto Giunchiglia, Hao Xu:
Federated Multi-Task Attention for Cross-Individual Human Activity Recognition. IJCAI 2022: 3423-3429 - [c32]Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, Antonio Vergari:
Semantic Probabilistic Layers for Neuro-Symbolic Learning. NeurIPS 2022 - [c31]Emanuele Marconato, Andrea Passerini, Stefano Teso:
GlanceNets: Interpretable, Leak-proof Concept-based Models. NeurIPS 2022 - 2021
- [c30]Paolo Morettin, Andrea Passerini, Stefano Teso:
Co-creating Platformer Levels with Constrained Adversarial Networks. IUI Workshops 2021 - [c29]Paolo Dragone, Stefano Teso, Andrea Passerini:
Neuro-Symbolic Constraint Programming for Structured Prediction. NeSy 2021: 6-14 - [c28]Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini:
Interactive Label Cleaning with Example-based Explanations. NeurIPS 2021: 12966-12977 - [c27]Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, Guy Van den Broeck:
A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference. NeurIPS 2021: 13189-13201 - 2020
- [c26]Mohit Kumar, Samuel Kolb, Stefano Teso, Luc De Raedt:
Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation. AAAI 2020: 4493-4500 - [c25]Paolo Morettin, Samuel Kolb, Stefano Teso, Andrea Passerini:
Learning Weighted Model Integration Distributions. AAAI 2020: 5224-5231 - [c24]Qiang Shen, Stefano Teso, Wanyi Zhang, Hao Xu, Fausto Giunchiglia:
Multi-Modal Subjective Context Modelling and Recognition. MRC@ECAI 2020: 32-36 - [c23]Andrea Bontempelli, Stefano Teso, Fausto Giunchiglia, Andrea Passerini:
Learning in the Wild with Incremental Skeptical Gaussian Processes. IJCAI 2020: 2886-2892 - [c22]Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Paolo Morettin, Stefano Teso, Andrea Passerini:
Efficient Generation of Structured Objects with Constrained Adversarial Networks. NeurIPS 2020 - [c21]Clément Gautrais, Yann Dauxais, Samuel Kolb, Arcchit Jain, Mohit Kumar, Stefano Teso, Elia Van Wolputte, Gust Verbruggen, Luc De Raedt:
VisualSynth: Democratizing Data Science in Spreadsheets. ECML/PKDD (5) 2020: 550-554 - 2019
- [c20]Stefano Teso, Kristian Kersting:
Explanatory Interactive Machine Learning. AIES 2019: 239-245 - [c19]Mohit Kumar, Stefano Teso, Patrick De Causmaecker, Luc De Raedt:
Automating Personnel Rostering by Learning Constraints Using Tensors. ICTAI 2019: 697-704 - [c18]Elias Arnold Schede, Samuel Kolb, Stefano Teso:
Learning Linear Programs from Data. ICTAI 2019: 1019-1026 - [c17]Mohit Kumar, Stefano Teso, Luc De Raedt:
Acquiring Integer Programs from Data. IJCAI 2019: 1130-1136 - [c16]Yann Dauxais, Clément Gautrais, Anton Dries, Arcchit Jain, Samuel Kolb, Mohit Kumar, Stefano Teso, Elia Van Wolputte, Gust Verbruggen, Luc De Raedt:
SynthLog: A Language for Synthesising Inductive Data Models (Extended Abstract). PKDD/ECML Workshops (1) 2019: 102-110 - [c15]Stefano Teso:
Constraint Learning: An Appetizer. RW 2019: 232-249 - 2018
- [c14]Paolo Dragone, Stefano Teso, Mohit Kumar, Andrea Passerini:
Decomposition Strategies for Constructive Preference Elicitation. AAAI 2018: 2934-2942 - [c13]Paolo Dragone, Stefano Teso, Andrea Passerini:
Constructive Preference Elicitation Over Hybrid Combinatorial Spaces. AAAI 2018: 2943-2950 - [c12]Luc De Raedt, Andrea Passerini, Stefano Teso:
Learning Constraints From Examples. AAAI 2018: 7965-7970 - [c11]Luc De Raedt, Hendrik Blockeel, Samuel Kolb, Stefano Teso, Gust Verbruggen:
Elements of an Automatic Data Scientist. IDA 2018: 3-14 - [c10]Samuel Kolb, Stefano Teso, Andrea Passerini, Luc De Raedt:
Learning SMT(LRA) Constraints using SMT Solvers. IJCAI 2018: 2333-2340 - [c9]Paolo Dragone, Stefano Teso, Andrea Passerini:
Pyconstruct: Constraint Programming Meets Structured Prediction. IJCAI 2018: 5823-5825 - [c8]Luca Erculiani, Paolo Dragone, Stefano Teso, Andrea Passerini:
Automating Layout Synthesis with Constructive Preference Elicitation. ECML/PKDD (3) 2018: 254-270 - 2017
- [c7]Stefano Teso, Paolo Dragone, Andrea Passerini:
Coactive Critiquing: Elicitation of Preferences and Features. AAAI 2017: 2639-2645 - [c6]Stefano Teso, Andrea Passerini, Paolo Viappiani:
Constructive Preference Elicitation for Multiple Users with Setwise Max-margin. ADT 2017: 3-17 - 2016
- [c5]Stefano Teso, Andrea Passerini, Paolo Viappiani:
Constructive Preference Elicitation by Setwise Max-Margin Learning. IJCAI 2016: 2067-2073 - 2013
- [c4]Stefano Teso, Jacopo Staiano, Bruno Lepri, Andrea Passerini, Fabio Pianesi:
Ego-centric Graphlets for Personality and Affective States Recognition. SocialCom 2013: 874-877 - 2012
- [c3]Elisa Cilia, Stefano Teso, Sergio Ammendola, Tom Lenaerts, Andrea Passerini:
Predicting virus mutations through relational learning. AIMM 2012 - 2010
- [c2]Carlo Nicolini, Bruno Lepri, Stefano Teso, Andrea Passerini:
From On-Going to Complete Activity Recognition Exploiting Related Activities. HBU 2010: 26-37 - [c1]Stefano Teso, Cristina Di Risio, Andrea Passerini, Roberto Battiti:
An On/Off Lattice Approach to Protein Structure Prediction from Contact Maps. PRIB 2010: 368-379
Parts in Books or Collections
- 2023
- [p2]Kareem Ahmed, Stefano Teso, Paolo Morettin, Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Yitao Liang, Eric Wang, Kai-Wei Chang, Andrea Passerini, Guy Van den Broeck:
Semantic Loss Functions for Neuro-Symbolic Structured Prediction. Compendium of Neurosymbolic Artificial Intelligence 2023: 485-505 - 2022
- [p1]Clément Gautrais, Yann Dauxais, Stefano Teso, Samuel Kolb, Gust Verbruggen, Luc De Raedt:
Human-Machine Collaboration for Democratizing Data Science. Human-Like Machine Intelligence 2022: 379-402
Data and Artifacts
- 2022
- [d1]Ivan Donadello, Anthony Hunter, Stefano Teso, Mauro Dragoni:
A Dataset for Utility Prediction in Computational Persuasion with Machine Learning Techniques. Zenodo, 2022
Informal and Other Publications
- 2024
- [i46]Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea Passerini, Stefano Teso:
BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts. CoRR abs/2402.12240 (2024) - [i45]Debodeep Banerjee, Stefano Teso, Burcu Sayin, Andrea Passerini:
Learning To Guide Human Decision Makers With Vision-Language Models. CoRR abs/2403.16501 (2024) - [i44]Diego Calanzone, Stefano Teso, Antonio Vergari:
Towards Logically Consistent Language Models via Probabilistic Reasoning. CoRR abs/2404.12843 (2024) - [i43]Kareem Ahmed, Stefano Teso, Paolo Morettin, Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Yitao Liang, Eric Wang, Kai-Wei Chang, Andrea Passerini, Guy Van den Broeck:
Semantic Loss Functions for Neuro-Symbolic Structured Prediction. CoRR abs/2405.07387 (2024) - [i42]Samuele Bortolotti, Emanuele Marconato, Tommaso Carraro, Paolo Morettin, Emile van Krieken, Antonio Vergari, Stefano Teso, Andrea Passerini:
A Benchmark Suite for Systematically Evaluating Reasoning Shortcuts. CoRR abs/2406.10368 (2024) - [i41]Steve Azzolin, Antonio Longa, Stefano Teso, Andrea Passerini:
Perks and Pitfalls of Faithfulness in Regular, Self-Explainable and Domain Invariant GNNs. CoRR abs/2406.15156 (2024) - [i40]Cristiana Lalletti, Stefano Teso:
Spurious Correlations in Concept Drift: Can Explanatory Interaction Help? CoRR abs/2407.16515 (2024) - [i39]Diego Calanzone, Stefano Teso, Antonio Vergari:
Logically Consistent Language Models via Neuro-Symbolic Integration. CoRR abs/2409.13724 (2024) - 2023
- [i38]Emanuele Marconato, Gianpaolo Bontempo, Elisa Ficarra, Simone Calderara, Andrea Passerini, Stefano Teso:
Neuro Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal. CoRR abs/2302.01242 (2023) - [i37]Emanuele Marconato, Stefano Teso, Andrea Passerini:
Neuro-Symbolic Reasoning Shortcuts: Mitigation Strategies and their Limitations. CoRR abs/2303.12578 (2023) - [i36]Emanuele Marconato, Stefano Teso, Antonio Vergari, Andrea Passerini:
Not All Neuro-Symbolic Concepts Are Created Equal: Analysis and Mitigation of Reasoning Shortcuts. CoRR abs/2305.19951 (2023) - [i35]Debodeep Banerjee, Stefano Teso, Andrea Passerini:
Learning to Guide Human Experts via Personalized Large Language Models. CoRR abs/2308.06039 (2023) - [i34]Marc Christiansen, Lea Villadsen, Zhiqiang Zhong, Stefano Teso, Davide Mottin:
How Faithful are Self-Explainable GNNs? CoRR abs/2308.15096 (2023) - [i33]Emanuele Marconato, Andrea Passerini, Stefano Teso:
Interpretability is in the Mind of the Beholder: A Causal Framework for Human-interpretable Representation Learning. CoRR abs/2309.07742 (2023) - 2022
- [i32]Mohit Kumar, Samuel Kolb, Stefano Teso, Luc De Raedt:
Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation. CoRR abs/2202.03888 (2022) - [i31]Stefano Teso, Antonio Vergari:
Efficient and Reliable Probabilistic Interactive Learning with Structured Outputs. CoRR abs/2202.08566 (2022) - [i30]Andrea Bontempelli, Marcelo Rodas Britez, Xiaoyue Li, Haonan Zhao, Luca Erculiani, Stefano Teso, Andrea Passerini, Fausto Giunchiglia:
Lifelong Personal Context Recognition. CoRR abs/2205.10123 (2022) - [i29]Stefano Teso, Laurens Bliek, Andrea Borghesi, Michele Lombardi, Neil Yorke-Smith, Tias Guns, Andrea Passerini:
Machine Learning for Combinatorial Optimisation of Partially-Specified Problems: Regret Minimisation as a Unifying Lens. CoRR abs/2205.10157 (2022) - [i28]Emanuele Marconato, Andrea Passerini, Stefano Teso:
GlanceNets: Interpretabile, Leak-proof Concept-based Models. CoRR abs/2205.15612 (2022) - [i27]Andrea Bontempelli, Stefano Teso, Fausto Giunchiglia, Andrea Passerini:
Concept-level Debugging of Part-Prototype Networks. CoRR abs/2205.15769 (2022) - [i26]Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, Antonio Vergari:
Semantic Probabilistic Layers for Neuro-Symbolic Learning. CoRR abs/2206.00426 (2022) - [i25]Stefano Teso, Öznur Alkan, Wolfgang Stammer, Elizabeth Daly:
Leveraging Explanations in Interactive Machine Learning: An Overview. CoRR abs/2207.14526 (2022) - 2021
- [i24]Freya Behrens, Stefano Teso, Davide Mottin:
Bandits for Learning to Explain from Explanations. CoRR abs/2102.03815 (2021) - [i23]Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, Guy Van den Broeck:
A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries. CoRR abs/2102.06137 (2021) - [i22]Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini, Stefano Teso:
Human-in-the-loop Handling of Knowledge Drift. CoRR abs/2103.14874 (2021) - [i21]Paolo Dragone, Stefano Teso, Andrea Passerini:
Neuro-Symbolic Constraint Programming for Structured Prediction. CoRR abs/2103.17232 (2021) - [i20]Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini:
Interactive Label Cleaning with Example-based Explanations. CoRR abs/2106.03922 (2021) - [i19]Mohit Kumar, Samuel Kolb, Luc De Raedt, Stefano Teso:
Learning Mixed-Integer Linear Programs from Contextual Examples. CoRR abs/2107.07136 (2021) - [i18]Andrea Bontempelli, Fausto Giunchiglia, Andrea Passerini, Stefano Teso:
Toward a Unified Framework for Debugging Gray-box Models. CoRR abs/2109.11160 (2021) - [i17]Ivan Donadello, Anthony Hunter, Stefano Teso, Mauro Dragoni:
Machine Learning for Utility Prediction in Argument-Based Computational Persuasion. CoRR abs/2112.04953 (2021) - 2020
- [i16]Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger, Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin Mahlein, Kristian Kersting:
Right for the Wrong Scientific Reasons: Revising Deep Networks by Interacting with their Explanations. CoRR abs/2001.05371 (2020) - [i15]Clément Gautrais, Yann Dauxais, Stefano Teso, Samuel Kolb, Gust Verbruggen, Luc De Raedt:
Human-Machine Collaboration for Democratizing Data Science. CoRR abs/2004.11113 (2020) - [i14]Teodora Popordanoska, Mohit Kumar, Stefano Teso:
Toward Machine-Guided, Human-Initiated Explanatory Interactive Learning. CoRR abs/2007.10018 (2020) - [i13]Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Paolo Morettin, Stefano Teso, Andrea Passerini:
Efficient Generation of Structured Objects with Constrained Adversarial Networks. CoRR abs/2007.13197 (2020) - [i12]Teodora Popordanoska, Mohit Kumar, Stefano Teso:
Machine Guides, Human Supervises: Interactive Learning with Global Explanations. CoRR abs/2009.09723 (2020) - [i11]Andrea Bontempelli, Stefano Teso, Fausto Giunchiglia, Andrea Passerini:
Learning in the Wild with Incremental Skeptical Gaussian Processes. CoRR abs/2011.00928 (2020) - [i10]Qiang Shen, Stefano Teso, Wanyi Zhang, Hao Xu, Fausto Giunchiglia:
Multi-Modal Subjective Context Modelling and Recognition. CoRR abs/2011.09671 (2020) - 2019
- [i9]Stefano Teso:
Does Symbolic Knowledge Prevent Adversarial Fooling? CoRR abs/1912.10834 (2019) - 2018
- [i8]Stefano Teso, Kristian Kersting:
"Why Should I Trust Interactive Learners?" Explaining Interactive Queries of Classifiers to Users. CoRR abs/1805.08578 (2018) - [i7]Mohit Kumar, Stefano Teso, Luc De Raedt:
Automating Personnel Rostering by Learning Constraints Using Tensors. CoRR abs/1805.11375 (2018) - 2017
- [i6]Paolo Dragone, Stefano Teso, Andrea Passerini:
Constructive Preference Elicitation over Hybrid Combinatorial Spaces. CoRR abs/1711.07875 (2017) - [i5]Paolo Dragone, Stefano Teso, Mohit Kumar, Andrea Passerini:
Decomposition Strategies for Constructive Preference Elicitation. CoRR abs/1711.08247 (2017) - 2016
- [i4]Stefano Teso, Andrea Passerini, Paolo Viappiani:
Constructive Preference Elicitation by Setwise Max-margin Learning. CoRR abs/1604.06020 (2016) - [i3]Stefano Teso, Paolo Dragone, Andrea Passerini:
Coactive Critiquing: Elicitation of Preferences and Features. CoRR abs/1612.01941 (2016) - 2014
- [i2]Stefano Teso, Roberto Sebastiani, Andrea Passerini:
Hybrid SRL with Optimization Modulo Theories. CoRR abs/1402.4354 (2014) - [i1]Stefano Teso, Roberto Sebastiani, Andrea Passerini:
Structured Learning Modulo Theories. CoRR abs/1405.1675 (2014)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-16 21:21 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint