default search action
Siamak Layeghy
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j22]Liam Daly Manocchio, Siamak Layeghy, David Gwynne, Marius Portmann:
A configurable anonymisation approach for network flow data: Balancing utility and privacy. Comput. Electr. Eng. 118: 109465 (2024) - [j21]Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marcus Gallagher, Marius Portmann:
Feature extraction for machine learning-based intrusion detection in IoT networks. Digit. Commun. Networks 10(1): 205-216 (2024) - [j20]Liam Daly Manocchio, Siamak Layeghy, Wai Weng Lo, Gayan K. Kulatilleke, Mohanad Sarhan, Marius Portmann:
FlowTransformer: A transformer framework for flow-based network intrusion detection systems. Expert Syst. Appl. 241: 122564 (2024) - [j19]Siamak Layeghy, Marcus Gallagher, Marius Portmann:
Benchmarking the benchmark - Comparing synthetic and real-world Network IDS datasets. J. Inf. Secur. Appl. 80: 103689 (2024) - [j18]Liam Daly Manocchio, Siamak Layeghy, Marius Portmann:
FlowTransformer: A flexible python framework for flow-based network data analysis. Softw. Impacts 22: 100702 (2024) - [i24]Paul R. B. Houssel, Priyanka Singh, Siamak Layeghy, Marius Portmann:
Towards Explainable Network Intrusion Detection using Large Language Models. CoRR abs/2408.04342 (2024) - 2023
- [j17]Wai Weng Lo, Gayan K. Kulatilleke, Mohanad Sarhan, Siamak Layeghy, Marius Portmann:
Inspection-L: self-supervised GNN node embeddings for money laundering detection in bitcoin. Appl. Intell. 53(16): 19406-19417 (2023) - [j16]Siamak Layeghy, Marius Portmann:
Explainable Cross-domain Evaluation of ML-based Network Intrusion Detection Systems. Comput. Electr. Eng. 108: 108692 (2023) - [j15]Mohanad Sarhan, Siamak Layeghy, Marcus Gallagher, Marius Portmann:
From zero-shot machine learning to zero-day attack detection. Int. J. Inf. Sec. 22(4): 947-959 (2023) - [j14]Wai Weng Lo, Gayan K. Kulatilleke, Mohanad Sarhan, Siamak Layeghy, Marius Portmann:
XG-BoT: An explainable deep graph neural network for botnet detection and forensics. Internet Things 22: 100747 (2023) - [j13]Seyedehfaezeh Hosseininoorbin, Siamak Layeghy, Brano Kusy, Raja Jurdak, Marius Portmann:
Exploring Edge TPU for deep feed-forward neural networks. Internet Things 22: 100749 (2023) - [j12]Seyedehfaezeh Hosseininoorbin, Siamak Layeghy, Brano Kusy, Raja Jurdak, Marius Portmann:
HARBIC: Human activity recognition using bi-stream convolutional neural network with dual joint time-frequency representation. Internet Things 22: 100816 (2023) - [j11]Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marius Portmann:
Cyber Threat Intelligence Sharing Scheme Based on Federated Learning for Network Intrusion Detection. J. Netw. Syst. Manag. 31(1): 3 (2023) - [j10]Seyedehfaezeh Hosseininoorbin, Siamak Layeghy, Mohanad Sarhan, Raja Jurdak, Marius Portmann:
Exploring edge TPU for network intrusion detection in IoT. J. Parallel Distributed Comput. 179: 104712 (2023) - [j9]Siamak Layeghy, Mahsa Baktashmotlagh, Marius Portmann:
DI-NIDS: Domain invariant network intrusion detection system. Knowl. Based Syst. 273: 110626 (2023) - [c18]Mohanad Sarhan, Gayan K. Kulatilleke, Wai Weng Lo, Siamak Layeghy, Marius Portmann:
DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly Detection. CCGridW 2023: 1-7 - [i23]Liam Daly Manocchio, Siamak Layeghy, Wai Weng Lo, Gayan K. Kulatilleke, Mohanad Sarhan, Marius Portmann:
FlowTransformer: A Transformer Framework for Flow-based Network Intrusion Detection Systems. CoRR abs/2304.14746 (2023) - 2022
- [j8]Mohanad Sarhan, Siamak Layeghy, Marius Portmann:
Evaluating Standard Feature Sets Towards Increased Generalisability and Explainability of ML-Based Network Intrusion Detection. Big Data Res. 30: 100359 (2022) - [j7]Mohanad Sarhan, Wai Weng Lo, Siamak Layeghy, Marius Portmann:
HBFL: A hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection. Comput. Electr. Eng. 103: 108379 (2022) - [j6]Evan Caville, Wai Weng Lo, Siamak Layeghy, Marius Portmann:
Anomal-E: A self-supervised network intrusion detection system based on graph neural networks. Knowl. Based Syst. 258: 110030 (2022) - [j5]Mohanad Sarhan, Siamak Layeghy, Marius Portmann:
Towards a Standard Feature Set for Network Intrusion Detection System Datasets. Mob. Networks Appl. 27(1): 357-370 (2022) - [c17]Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann:
Graph Neural Network-based Android Malware Classification with Jumping Knowledge. DSC 2022: 1-9 - [c16]Liam Daly Manocchio, Siamak Layeghy, Marius Portmann:
Network Intrusion Detection System in a Light Bulb. ITNAC 2022: 1-8 - [c15]Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann:
E-GraphSAGE: A Graph Neural Network based Intrusion Detection System for IoT. NOMS 2022: 1-9 - [i22]Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann:
Graph Neural Network-based Android Malware Classification with Jumping Knowledge. CoRR abs/2201.07537 (2022) - [i21]Wai Weng Lo, Siamak Layeghy, Marius Portmann:
Inspection-L: Practical GNN-Based Money Laundering Detection System for Bitcoin. CoRR abs/2203.10465 (2022) - [i20]Mohanad Sarhan, Wai Weng Lo, Siamak Layeghy, Marius Portmann:
HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a Collaborative IoT Intrusion Detection. CoRR abs/2204.04254 (2022) - [i19]Siamak Layeghy, Marius Portmann:
On Generalisability of Machine Learning-based Network Intrusion Detection Systems. CoRR abs/2205.04112 (2022) - [i18]Evan Caville, Wai Weng Lo, Siamak Layeghy, Marius Portmann:
Anomal-E: A Self-Supervised Network Intrusion Detection System based on Graph Neural Networks. CoRR abs/2207.06819 (2022) - [i17]Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marius Portmann:
XG-BoT: An Explainable Deep Graph Neural Network for Botnet Detection and Forensics. CoRR abs/2207.09088 (2022) - [i16]Liam Daly Manocchio, Siamak Layeghy, Marius Portmann:
Network Intrusion Detection System in a Light Bulb. CoRR abs/2210.03254 (2022) - [i15]Siamak Layeghy, Mahsa Baktashmotlagh, Marius Portmann:
DI-NIDS: Domain Invariant Network Intrusion Detection System. CoRR abs/2210.08252 (2022) - [i14]Mohanad Sarhan, Gayan K. Kulatilleke, Wai Weng Lo, Siamak Layeghy, Marius Portmann:
DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly Detection. CoRR abs/2212.07558 (2022) - 2021
- [j4]Seyedehfaezeh Hosseininoorbin, Siamak Layeghy, Brano Kusy, Raja Jurdak, Greg Bishop-Hurley, Paul L. Greenwood, Marius Portmann:
Deep learning-based cattle behaviour classification using joint time-frequency data representation. Comput. Electron. Agric. 187: 106241 (2021) - [j3]Mostefa Mesbah, Mohamed Salah Khlif, Siamak Layeghy, Christine East, Shiying Dong, Amy Brodtmann, Paul B. Colditz, Boualem Boashash:
Automatic fetal movement recognition from multi-channel accelerometry data. Comput. Methods Programs Biomed. 210: 106377 (2021) - [j2]Andrea Melis, Siamak Layeghy, Davide Berardi, Marius Portmann, Marco Prandini, Franco Callegati:
P-SCOR: Integration of Constraint Programming Orchestration and Programmable Data Plane. IEEE Trans. Netw. Serv. Manag. 18(1): 402-414 (2021) - [c14]Liam Daly Manocchio, Siamak Layeghy, Marius Portmann:
FlowGAN - Synthetic Network Flow Generation using Generative Adversarial Networks. CSE 2021: 168-176 - [c13]Seyedehfaezeh Hosseininoorbin, Siamak Layeghy, Brano Kusy, Raja Jurdak, Marius Portmann:
Scaling Spectrogram Data Representation for Deep Learning on Edge TPU. PerCom Workshops 2021: 572-578 - [i13]Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marius Portmann:
Towards a Standard Feature Set of NIDS Datasets. CoRR abs/2101.11315 (2021) - [i12]Seyedehfaezeh Hosseininoorbin, Siamak Layeghy, Mohanad Sarhan, Raja Jurdak, Marius Portmann:
Exploring Edge TPU for Network Intrusion Detection in IoT. CoRR abs/2103.16295 (2021) - [i11]Wai Weng Lo, Siamak Layeghy, Mohanad Sarhan, Marcus Gallagher, Marius Portmann:
E-GraphSAGE: A Graph Neural Network based Intrusion Detection System. CoRR abs/2103.16329 (2021) - [i10]Mohanad Sarhan, Siamak Layeghy, Marius Portmann:
An Explainable Machine Learning-based Network Intrusion Detection System for Enabling Generalisability in Securing IoT Networks. CoRR abs/2104.07183 (2021) - [i9]Siamak Layeghy, Marcus Gallagher, Marius Portmann:
Benchmarking the Benchmark - Analysis of Synthetic NIDS Datasets. CoRR abs/2104.09029 (2021) - [i8]Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marcus Gallagher, Marius Portmann:
Feature Extraction for Machine Learning-based Intrusion Detection in IoT Networks. CoRR abs/2108.12722 (2021) - [i7]Mohanad Sarhan, Siamak Layeghy, Marius Portmann:
Feature Analysis for ML-based IIoT Intrusion Detection. CoRR abs/2108.12732 (2021) - [i6]Mohanad Sarhan, Siamak Layeghy, Marcus Gallagher, Marius Portmann:
From Zero-Shot Machine Learning to Zero-Day Attack Detection. CoRR abs/2109.14868 (2021) - [i5]Seyedehfaezeh Hosseininoorbin, Siamak Layeghy, Brano Kusy, Raja Jurdak, Marius Portmann:
Exploring Deep Neural Networks on Edge TPU. CoRR abs/2110.08826 (2021) - [i4]Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marius Portmann:
A Cyber Threat Intelligence Sharing Scheme based on Federated Learning for Network Intrusion Detection. CoRR abs/2111.02791 (2021) - 2020
- [c12]Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marius Portmann:
NetFlow Datasets for Machine Learning-Based Network Intrusion Detection Systems. BDTA/WiCON 2020: 117-135 - [i3]Seyedeh Fa'ezeh Hosseini Noorbin, Siamak Layeghy, Brano Kusy, Raja Jurdak, Greg Bishop-Hurley, Marius Portmann:
Deep Learning-based Cattle Activity Classification Using Joint Time-frequency Data Representation. CoRR abs/2011.03381 (2020) - [i2]Mohanad Sarhan, Siamak Layeghy, Nour Moustafa, Marius Portmann:
NetFlow Datasets for Machine Learning-based Network Intrusion Detection Systems. CoRR abs/2011.09144 (2020)
2010 – 2019
- 2018
- [b1]Siamak Layeghy:
SCOR: Software-defined Constrained Optimal Routing Platform for SDN. University of Queensland, Australia, 2018 - [c11]Anees Al-Najjar, Siamak Layeghy, Marius Portmann, Jadwiga Indulska:
Enhancing Quality of Experience of VoIP Traffic in SDN based End-hosts. ITNAC 2018: 1-8 - 2017
- [c10]Talal Alharbi, Siamak Layeghy, Marius Portmann:
Experimental evaluation of the impact of DoS attacks in SDN. ITNAC 2017: 1-6 - 2016
- [c9]Anees Al-Najjar, Farzaneh Pakzad, Siamak Layeghy, Marius Portmann:
Link capacity estimation in SDN-based end-hosts. ICSPCS 2016: 1-8 - [c8]Siamak Layeghy, Farzaneh Pakzad, Marius Portmann:
SCOR: Constraint Programming-based Northbound Interface for SDN. ITNAC 2016: 83-88 - [c7]Farzaneh Pakzad, Siamak Layeghy, Marius Portmann:
Evaluation of Mininet-WiFi integration via ns-3. ITNAC 2016: 243-248 - [c6]Anees Al-Najjar, Siamak Layeghy, Marius Portmann:
Pushing SDN to the end-host, network load balancing using OpenFlow. PerCom Workshops 2016: 1-6 - [i1]Siamak Layeghy, Farzaneh Pakzad, Marius Portmann:
SCOR: Software-defined Constrained Optimal Routing Platform for SDN. CoRR abs/1607.03243 (2016) - 2014
- [j1]Maryam Odabaee, Anton Tokariev, Siamak Layeghy, Mostefa Mesbah, Paul B. Colditz, Ceon Ramon, Sampsa Vanhatalo:
Neonatal EEG at scalp is focal and implies high skull conductivity in realistic neonatal head models. NeuroImage 96: 73-80 (2014) - [c5]Siamak Layeghy, Ghasem Azemi, Paul B. Colditz, Boualem Boashash:
Non-invasivemonitoring of fetal movements using time-frequency features of accelerometry. ICASSP 2014: 4379-4383 - 2012
- [c4]Mohamed Salah Khlif, Boualem Boashash, Siamak Layeghy, Taoufik Ben Jabeur, Paul B. Colditz, Christine East:
A passive DSP approach to fetal movement detection for monitoring fetal health. ISSPA 2012: 71-76 - [c3]Maryam Odabaee, Siamak Layeghy, Mostefa Mesbah, Ghasem Azemi, Boualem Boashash, Paul B. Colditz, Sampsa Vanhatalo:
EEG amplitude and correlation spatial decay analysis for neonatal head modelling. ISSPA 2012: 882-887 - 2011
- [c2]Siamak Layeghy, Maryam Odabaee, Mohamed Salah Khlif, H. R. Amindavar:
A time frequency approach to CFAR detection. ISSPIT 2011: 230-234 - [c1]Mohamed Salah Khlif, Boualem Boashash, Siamak Layeghy, Taoufik Ben Jabeur, Mostefa Mesbah, Christine East, Paul B. Colditz:
Time-frequency characterization of tri-axial accelerometer data for fetal movement detection. ISSPIT 2011: 466-471
Coauthor Index
aka: Seyedeh Fa'ezeh Hosseini Noorbin
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:10 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint