default search action
Hrushikesh N. Mhaskar
Person information
- affiliation: Claremont Graduate University, Institute of Mathematical Sciences, CA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [i32]Michael McKenna, Hrushikesh N. Mhaskar, Richard G. Spencer:
Inversion of the Laplace Transform of Point Masses. CoRR abs/2402.04348 (2024) - [i31]Hrushikesh N. Mhaskar, Ryan O'Dowd:
Learning on manifolds without manifold learning. CoRR abs/2402.12687 (2024) - 2023
- [i30]Hrushikesh Narhar Mhaskar, Ryan O'Dowd:
Local transfer learning from one data space to another. CoRR abs/2302.00160 (2023) - [i29]Quoc Thong Le Gia, Hrushikesh N. Mhaskar:
Numerical solutions to an inverse problem for a non-linear Helmholtz equation. CoRR abs/2302.01475 (2023) - [i28]Katarina Doctor, Tong Mao, Hrushikesh N. Mhaskar:
Encoding of data sets and algorithms. CoRR abs/2303.00984 (2023) - [i27]Hrushikesh N. Mhaskar:
Approximation by non-symmetric networks for cross-domain learning. CoRR abs/2305.03890 (2023) - [i26]Hrushikesh N. Mhaskar, Tong Mao:
Tractability of approximation by general shallow networks. CoRR abs/2308.03230 (2023) - 2022
- [j53]Eric Mason, Hrushikesh N. Mhaskar, Adam Guo:
A manifold learning approach for gesture recognition from micro-Doppler radar measurements. Neural Networks 152: 353-369 (2022) - [j52]Ningning Han, Hrushikesh N. Mhaskar, Charles K. Chui:
Theory-Inspired Deep Network for Instantaneous-Frequency Extraction and Subsignals Recovery From Discrete Blind-Source Data. IEEE Trans. Neural Networks Learn. Syst. 33(8): 3437-3447 (2022) - [i25]Hrushikesh N. Mhaskar:
Local approximation of operators. CoRR abs/2202.06392 (2022) - 2021
- [j51]Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, Maria D. van der Walt:
A Function Approximation Approach to the Prediction of Blood Glucose Levels. Frontiers Appl. Math. Stat. 7: 707884 (2021) - [j50]Srinjoy Das, Hrushikesh N. Mhaskar, Alexander Cloninger:
Kernel Distance Measures for Time Series, Random Fields and Other Structured Data. Frontiers Appl. Math. Stat. 7: 787455 (2021) - [i24]Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, Maria D. van der Walt:
A function approximation approach to the prediction of blood glucose levels. CoRR abs/2105.05893 (2021) - [i23]Srinjoy Das, Hrushikesh N. Mhaskar, Alexander Cloninger:
Kernel distance measures for time series, random fields and other structured data. CoRR abs/2109.14752 (2021) - [i22]Eric Mason, Hrushikesh N. Mhaskar, Adam Guo:
A manifold learning approach for gesture identification from micro-Doppler radar measurements. CoRR abs/2110.01670 (2021) - 2020
- [j49]Hrushikesh N. Mhaskar:
Kernel-Based Analysis of Massive Data. Frontiers Appl. Math. Stat. 6: 30 (2020) - [j48]Hrushikesh N. Mhaskar, Xiuyuan Cheng, Alexander Cloninger:
A Witness Function Based Construction of Discriminative Models Using Hermite Polynomials. Frontiers Appl. Math. Stat. 6: 31 (2020) - [j47]Hrushikesh N. Mhaskar, Tomaso A. Poggio:
An analysis of training and generalization errors in shallow and deep networks. Neural Networks 121: 229-241 (2020) - [j46]Hrushikesh N. Mhaskar:
Dimension independent bounds for general shallow networks. Neural Networks 123: 142-152 (2020) - [j45]Hrushikesh N. Mhaskar:
A direct approach for function approximation on data defined manifolds. Neural Networks 132: 253-268 (2020) - [i21]Charles K. Chui, Ningning Han, Hrushikesh N. Mhaskar:
Theory inspired deep network for instantaneous-frequency extraction and signal components recovery from discrete blind-source data. CoRR abs/2001.12006 (2020) - [i20]Hrushikesh N. Mhaskar:
Kernel based analysis of massive data. CoRR abs/2003.13226 (2020) - [i19]Alexander Cloninger, Hrushikesh N. Mhaskar:
Cautious Active Clustering. CoRR abs/2008.01245 (2020) - [i18]Alex Cloninger, Hrushikesh N. Mhaskar:
A low discrepancy sequence on graphs. CoRR abs/2010.04227 (2020)
2010 – 2019
- 2019
- [j44]Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, Vasyl Yu. Semenov, Evgeniya V. Semenova:
Data Based Construction of Kernels for Semi-Supervised Learning With Less Labels. Frontiers Appl. Math. Stat. 5: 21 (2019) - [j43]Hrushikesh N. Mhaskar:
Function approximation with zonal function networks with activation functions analogous to the rectified linear unit functions. J. Complex. 51: 1-19 (2019) - [i17]Hrushikesh N. Mhaskar, Alex Cloninger, Xiuyuan Cheng:
A witness function based construction of discriminative models using Hermite polynomials. CoRR abs/1901.02975 (2019) - [i16]Hrushikesh N. Mhaskar, Tomaso A. Poggio:
Function approximation by deep networks. CoRR abs/1905.12882 (2019) - [i15]Hrushikesh N. Mhaskar:
Super-resolution meets machine learning: approximation of measures. CoRR abs/1907.04895 (2019) - [i14]Hrushikesh N. Mhaskar:
Deep Gaussian networks for function approximation on data defined manifolds. CoRR abs/1908.00156 (2019) - [i13]Hrushikesh N. Mhaskar:
Dimension independent bounds for general shallow networks. CoRR abs/1908.09880 (2019) - 2018
- [j42]Charles K. Chui, Hrushikesh N. Mhaskar:
Deep Nets for Local Manifold Learning. Frontiers Appl. Math. Stat. 4: 12 (2018) - [j41]Shivkumar Chandrasekaran, C. H. Gorman, Hrushikesh Narhar Mhaskar:
Minimum Sobolev norm interpolation of scattered derivative data. J. Comput. Phys. 365: 149-172 (2018) - [i12]Tomaso A. Poggio, Kenji Kawaguchi, Qianli Liao, Brando Miranda, Lorenzo Rosasco, Xavier Boix, Jack Hidary, Hrushikesh N. Mhaskar:
Theory of Deep Learning III: explaining the non-overfitting puzzle. CoRR abs/1801.00173 (2018) - [i11]Hrushikesh N. Mhaskar, Tomaso A. Poggio:
An analysis of training and generalization errors in shallow and deep networks. CoRR abs/1802.06266 (2018) - [i10]Abhejit Rajagopal, Shivkumar Chandrasekaran, Hrushikesh Narhar Mhaskar:
Deep Algorithms: designs for networks. CoRR abs/1806.02003 (2018) - 2017
- [j40]Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, Maria D. van der Walt:
A Deep Learning Approach to Diabetic Blood Glucose Prediction. Frontiers Appl. Math. Stat. 3: 14 (2017) - [j39]Tomaso A. Poggio, Hrushikesh N. Mhaskar, Lorenzo Rosasco, Brando Miranda, Qianli Liao:
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review. Int. J. Autom. Comput. 14(5): 503-519 (2017) - [c3]Hrushikesh N. Mhaskar, Qianli Liao, Tomaso A. Poggio:
When and Why Are Deep Networks Better Than Shallow Ones? AAAI 2017: 2343-2349 - [i9]Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, Maria D. van der Walt:
A deep learning approach to diabetic blood glucose prediction. CoRR abs/1707.05828 (2017) - [i8]Charles K. Chui, Hrushikesh Narhar Mhaskar:
A Fourier-invariant method for locating point-masses and computing their attributes. CoRR abs/1707.09319 (2017) - [i7]Charles K. Chui, Hrushikesh Narhar Mhaskar:
A unified method for super-resolution recovery and real exponential-sum separation. CoRR abs/1707.09428 (2017) - [i6]Hrushikesh N. Mhaskar:
Function approximation with ReLU-like zonal function networks. CoRR abs/1709.08174 (2017) - 2016
- [i5]Hrushikesh N. Mhaskar, Qianli Liao, Tomaso A. Poggio:
Learning Real and Boolean Functions: When Is Deep Better Than Shallow. CoRR abs/1603.00988 (2016) - [i4]Charles K. Chui, Hrushikesh Narhar Mhaskar:
Deep nets for local manifold learning. CoRR abs/1607.07110 (2016) - [i3]Hrushikesh N. Mhaskar, Tomaso A. Poggio:
Deep vs. shallow networks : An approximation theory perspective. CoRR abs/1608.03287 (2016) - [i2]Tomaso A. Poggio, Hrushikesh N. Mhaskar, Lorenzo Rosasco, Brando Miranda, Qianli Liao:
Why and When Can Deep - but Not Shallow - Networks Avoid the Curse of Dimensionality: a Review. CoRR abs/1611.00740 (2016) - 2015
- [j38]Shivkumar Chandrasekaran, Hrushikesh Narhar Mhaskar:
A minimum Sobolev norm technique for the numerical discretization of PDEs. J. Comput. Phys. 299: 649-666 (2015) - 2014
- [j37]Charles K. Chui, Hrushikesh Narhar Mhaskar:
Smooth function extension based on high dimensional unstructured data. Math. Comput. 83(290): 2865-2891 (2014) - 2013
- [j36]Hrushikesh Narhar Mhaskar, Valeriya Naumova, Sergei V. Pereverzyev:
Filtered Legendre expansion method for numerical differentiation at the boundary point with application to blood glucose predictions. Appl. Math. Comput. 224: 835-847 (2013) - [j35]Shivkumar Chandrasekaran, Karthik Jayaraman Jayaraman, Hrushikesh Narhar Mhaskar:
Minimum Sobolev norm interpolation with trigonometric polynomials on the torus. J. Comput. Phys. 249: 96-112 (2013) - 2012
- [j34]Karthik Jayaraman Raghuram, Shivkumar Chandrasekaran, Joseph Moffitt, Ming Gu, Hrushikesh Narhar Mhaskar:
Higher order numerical discretizations for exterior and biharmonic type PDEs. J. Comput. Appl. Math. 236(18): 4762-4774 (2012) - [j33]Martin Ehler, Frank Filbir, Hrushikesh Narhar Mhaskar:
Locally Learning Biomedical Data Using Diffusion Frames. J. Comput. Biol. 19(11): 1251-1264 (2012) - 2011
- [j32]Frank Filbir, Hrushikesh Narhar Mhaskar:
Marcinkiewicz-Zygmund measures on manifolds. J. Complex. 27(6): 568-596 (2011) - [j31]Hrushikesh N. Mhaskar:
A generalized diffusion frame for parsimonious representation of functions on data defined manifolds. Neural Networks 24(4): 345-359 (2011) - [c2]Shiv Chandrasekaran, K. R. Jayaraman, Ming Gu, Hrushikesh Narhar Mhaskar, J. Mofftt:
Higher Order Numerical Discretization Methods with Sobolev Norm Minimization. ICCS 2011: 206-215 - 2010
- [j30]Hrushikesh Narhar Mhaskar, Francis J. Narcowich, Jürgen Prestin, Joseph D. Ward:
Lp Bernstein estimates and approximation by spherical basis functions. Math. Comput. 79(271): 1647-1679 (2010)
2000 – 2009
- 2009
- [j29]Charles K. Chui, Hrushikesh Narhar Mhaskar:
Preface part 1. J. Approx. Theory 158(1): 1-2 (2009) - [j28]Charles K. Chui, Hrushikesh Narhar Mhaskar:
Preface part 2. J. Approx. Theory 158(2): 143-144 (2009) - [j27]Charles K. Chui, Hrushikesh Narhar Mhaskar:
Preface part 3. J. Approx. Theory 159(1): 1-2 (2009) - [j26]Charles K. Chui, Hrushikesh Narhar Mhaskar:
Preface part 4. J. Approx. Theory 159(2): 165-166 (2009) - [j25]Frank Filbir, Hrushikesh Narhar Mhaskar, Jürgen Prestin:
On a filter for exponentially localized kernels based on Jacobi polynomials. J. Approx. Theory 160(1-2): 256-280 (2009) - [i1]Hrushikesh N. Mhaskar:
Eignets for function approximation on manifolds. CoRR abs/0909.5000 (2009) - 2008
- [j24]Quoc Thong Le Gia, Hrushikesh N. Mhaskar:
Localized Linear Polynomial Operators and Quadrature Formulas on the Sphere. SIAM J. Numer. Anal. 47(1): 440-466 (2008) - 2007
- [b2]Narendra Kumar Govil, Hrushikesh Narhar Mhaskar, Ram N. Mohapatra, Zuhair Nashed, József Szabados:
Frontiers in Interpolation and Approximation. Pure and applied mathematics 282, Chapman & Hall 2007, ISBN 978-1-58488-636-5, pp. I-XLIII, 1-431 - [j23]Kerstin Hesse, Hrushikesh N. Mhaskar, Ian H. Sloan:
Quadrature in Besov spaces on the Euclidean sphere. J. Complex. 23(4-6): 528-552 (2007) - 2006
- [j22]Hrushikesh Narhar Mhaskar:
Weighted quadrature formulas and approximation by zonal function networks on the sphere. J. Complex. 22(3): 348-370 (2006) - [j21]Quoc Thong Le Gia, Hrushikesh N. Mhaskar:
Polynomial operators and local approximation of solutions of pseudo-differential equations on the sphere. Numerische Mathematik 103(2): 299-322 (2006) - [j20]Mahadevan Ganesh, Hrushikesh N. Mhaskar:
Matrix-free Interpolation on the Sphere. SIAM J. Numer. Anal. 44(3): 1314-1331 (2006) - 2004
- [j19]Hrushikesh Narhar Mhaskar, Francis J. Narcowich, Joseph D. Ward:
On the Representation of Band-Dominant Functions on the Sphere Using Finitely Many Bits. Adv. Comput. Math. 21(1-2): 127-146 (2004) - [j18]Hrushikesh Narhar Mhaskar:
A tribute to Géza Freud. J. Approx. Theory 126(1): 1-15 (2004) - [j17]Hrushikesh Narhar Mhaskar:
Polynomial operators and local smoothness classes on the unit interval. J. Approx. Theory 131(2): 243-267 (2004) - [j16]Hrushikesh Narhar Mhaskar:
On the tractability of multivariate integration and approximation by neural networks. J. Complex. 20(4): 561-590 (2004) - [j15]Hrushikesh Narhar Mhaskar:
Local quadrature formulas on the sphere. J. Complex. 20(5): 753-772 (2004) - [j14]Hrushikesh Narhar Mhaskar:
When is approximation by Gaussian networks necessarily a linear process? Neural Networks 17(7): 989-1001 (2004) - 2003
- [j13]Hrushikesh Narhar Mhaskar, Francis J. Narcowich, Joseph D. Ward:
Zonal function network frames on the sphere. Neural Networks 16(2): 183-203 (2003) - 2002
- [j12]Hrushikesh Narhar Mhaskar:
On the Representation of Band Limited Functions Using Finitely Many Bits. J. Complex. 18(2): 449-478 (2002) - [j11]Hrushikesh Narhar Mhaskar, Francis J. Narcowich, Joseph D. Ward:
Corrigendum to "Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature''. Math. Comput. 71(237): 453-454 (2002) - 2001
- [j10]Hrushikesh Narhar Mhaskar, Francis J. Narcowich, Joseph D. Ward:
Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70(235): 1113-1130 (2001) - 2000
- [j9]Hrushikesh Narhar Mhaskar, Jürgen Prestin:
On the detection of singularities of a periodic function. Adv. Comput. Math. 12(2-3): 95-131 (2000) - [j8]Hrushikesh Narhar Mhaskar, Francis J. Narcowich, Jürgen Prestin, Joseph D. Ward:
Polynomial frames on the sphere. Adv. Comput. Math. 13(4): 387-403 (2000)
1990 – 1999
- 1999
- [j7]Hrushikesh Narhar Mhaskar, Francis J. Narcowich, Joseph D. Ward:
Approximation properties of zonal function networks using scattered data on the sphere. Adv. Comput. Math. 11(2-3): 121-137 (1999) - 1997
- [j6]Hrushikesh Narhar Mhaskar, Nahmwoo Hahm:
Neural Networks for Functional Approximation and System Identification. Neural Comput. 9(1): 143-159 (1997) - 1996
- [b1]Hrushikesh Narhar Mhaskar:
Introduction to the theory of weighted polynomial approximation. Series in approximations and decompositions 7, World Scientific 1996, ISBN 978-981-02-1312-1, pp. I-XIV, 1-379 - [j5]Charles K. Chui, Xin Li, Hrushikesh Narhar Mhaskar:
Limitations of the approximation capabilities of neural networks with one hidden layer. Adv. Comput. Math. 5(1): 233-243 (1996) - [j4]Hrushikesh N. Mhaskar:
Neural Networks for Optimal Approximation of Smooth and Analytic Functions. Neural Comput. 8(1): 164-177 (1996) - [j3]Hrushikesh Narhar Mhaskar:
Neural networks and approximation theory. Neural Networks 9(4): 721-722 (1996) - 1994
- [j2]Hrushikesh Narhar Mhaskar, Charles A. Micchelli:
Dimension-independent bounds on the degree of approximation by neural networks. IBM J. Res. Dev. 38(3): 277-284 (1994) - 1993
- [j1]Hrushikesh Narhar Mhaskar:
Approximation properties of a multilayered feedforward artificial neural network. Adv. Comput. Math. 1(1): 61-80 (1993) - [c1]Hrushikesh Narhar Mhaskar, Charles A. Micchelli:
How to Choose an Activation Function. NIPS 1993: 319-326
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:14 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint