default search action
Einoshin Suzuki
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j31]Ryosuke Miyake, Tetsu Matsukawa, Einoshin Suzuki:
Image Generation from Hyper Scene Graph with Multiple Types of Trinomial Hyperedges. SN Comput. Sci. 5(5): 624 (2024) - [c120]Liheng Shen, Tetsu Matsukawa, Einoshin Suzuki:
SATJiP: Spatial and Augmented Temporal Jigsaw Puzzles for Video Anomaly Detection. PAKDD (1) 2024: 27-40 - [c119]Ryosuke Miyake, Tetsu Matsukawa, Einoshin Suzuki:
Image Generation from Hyper Scene Graphs with Trinomial Hyperedges Using Object Attention. VISIGRAPP (2): VISAPP 2024: 266-279 - 2023
- [j30]Kang Zhang, Muhammad Fikko Fadjrimiratno, Einoshin Suzuki:
Region Anomaly Detection via Spatial and Semantic Attributed Graph in Human Monitoring. Sensors 23(3): 1307 (2023) - [c118]Jose Alejandro Avellaneda, Tetsu Matsukawa, Einoshin Suzuki:
Cross-Modal Self-Supervised Feature Extraction for Anomaly Detection in Human Monitoring. CASE 2023: 1-8 - [c117]Wenbo Li, Yao Yang, Einoshin Suzuki:
Class-Specific Word Sense Aware Topic Modeling via Soft Orthogonalized Topics. CIKM 2023: 1218-1227 - [c116]Qiming Zou, Einoshin Suzuki:
Sample-Efficient Goal-Conditioned Reinforcement Learning via Predictive Information Bottleneck for Goal Representation Learning. ICRA 2023: 9523-9529 - [c115]Kang Zhang, Einoshin Suzuki:
Judging Credible and Unethical Statistical Data Explanations via Phrase Similarity Graph. PACIS 2023: 121 - [c114]Ryosuke Miyake, Tetsu Matsukawa, Einoshin Suzuki:
Image Generation from a Hyper Scene Graph with Trinomial Hyperedges. VISIGRAPP (5: VISAPP) 2023: 185-195 - 2022
- [j29]Ning Dong, Einoshin Suzuki:
GIAD-ST: Detecting anomalies in human monitoring based on generative inpainting via self-supervised multi-task learning. J. Intell. Inf. Syst. 59(3): 733-754 (2022) - [c113]Kang Zhang, Hiroaki Shinden, Tatsuki Mutsuro, Einoshin Suzuki:
Judging Instinct Exploitation in Statistical Data Explanations Based on Word Embedding. AIES 2022: 867-879 - [c112]Liheng Shen, Tetsu Matsukawa, Einoshin Suzuki:
Detecting Video Anomalous Events with an Enhanced Abnormality Score. PRICAI (1) 2022: 202-217 - 2021
- [j28]Mirai Takayanagi, Yasuo Tabei, Einoshin Suzuki, Hiroto Saigo:
Sparse Nonnegative Interaction Models. IEEE Access 9: 109994-110005 (2021) - [j27]Wenbo Li, Einoshin Suzuki:
Adaptive and hybrid context-aware fine-grained word sense disambiguation in topic modeling based document representation. Inf. Process. Manag. 58(4): 102592 (2021) - [j26]Wenbo Li, Hiroto Saigo, Bin Tong, Einoshin Suzuki:
Topic modeling for sequential documents based on hybrid inter-document topic dependency. J. Intell. Inf. Syst. 56(3): 435-458 (2021) - [c111]Qiming Zou, Einoshin Suzuki:
Contrastive Goal Grouping for Policy Generalization in Goal-Conditioned Reinforcement Learning. ICONIP (1) 2021: 240-253 - [c110]Kang Zhang, Muhammad Fikko Fadjrimiratno, Einoshin Suzuki:
Context-Based Anomaly Detection via Spatial Attributed Graphs in Human Monitoring. ICONIP (1) 2021: 450-463 - [c109]Ning Dong, Einoshin Suzuki:
GIAD: Generative Inpainting-Based Anomaly Detection via Self-Supervised Learning for Human Monitoring. PRICAI (2) 2021: 418-432 - [c108]Muhammad Fikko Fadjrimiratno, Yusuke Hatae, Tetsu Matsukawa, Einoshin Suzuki:
Detecting Anomalies from Human Activities by an Autonomous Mobile Robot based on "Fast and Slow" Thinking. VISIGRAPP (5: VISAPP) 2021: 943-953 - [i2]Yusuke Ohtsubo, Tetsu Matsukawa, Einoshin Suzuki:
Semi-Supervised Few-Shot Classification with Deep Invertible Hybrid Models. CoRR abs/2105.10644 (2021) - 2020
- [j25]Hirofumi Fujita, Tetsu Matsukawa, Einoshin Suzuki:
Detecting outliers with one-class selective transfer machine. Knowl. Inf. Syst. 62(5): 1781-1818 (2020) - [j24]Tetsu Matsukawa, Takahiro Okabe, Einoshin Suzuki, Yoichi Sato:
Hierarchical Gaussian Descriptors with Application to Person Re-Identification. IEEE Trans. Pattern Anal. Mach. Intell. 42(9): 2179-2194 (2020) - [c107]Wenbo Li, Einoshin Suzuki:
Hybrid Context-Aware Word Sense Disambiguation in Topic Modeling based Document Representation. ICDM 2020: 332-341 - [c106]Kaikai Zhao, Takashi Imaseki, Hiroshi Mouri, Einoshin Suzuki, Tetsu Matsukawa:
From Certain to Uncertain: Toward Optimal Solution for Offline Multiple Object Tracking. ICPR 2020: 2506-2513 - [c105]Tetsu Matsukawa, Einoshin Suzuki:
Convolutional Feature Transfer via Camera-Specific Discriminative Pooling for Person Re-Identification. ICPR 2020: 8408-8415 - [c104]Ning Dong, Yusuke Hatae, Muhammad Fikko Fadjrimiratno, Tetsu Matsukawa, Einoshin Suzuki:
Experimental Evaluation of GAN-Based One-Class Anomaly Detection on Office Monitoring. ISMIS 2020: 214-224 - [c103]Wenbo Li, Tetsu Matsukawa, Hiroto Saigo, Einoshin Suzuki:
Context-Aware Latent Dirichlet Allocation for Topic Segmentation. PAKDD (1) 2020: 475-486 - [c102]Yusuke Hatae, Qingpu Yang, Muhammad Fikko Fadjrimiratno, Yuanyuan Li, Tetsu Matsukawa, Einoshin Suzuki:
Detecting Anomalous Regions from an Image based on Deep Captioning. VISIGRAPP (5: VISAPP) 2020: 326-335
2010 – 2019
- 2019
- [j23]Kaikai Zhao, Tetsu Matsukawa, Einoshin Suzuki:
Experimental validation for N-ary error correcting output codes for ensemble learning of deep neural networks. J. Intell. Inf. Syst. 52(2): 367-392 (2019) - [c101]Yusuke Ohtsubo, Tetsu Matsukawa, Einoshin Suzuki:
Harnessing GAN with Metric Learning for One-Shot Generation on a Fine-Grained Category. ICTAI 2019: 915-922 - [c100]Tetsu Matsukawa, Einoshin Suzuki:
Kernelized Cross-view Quadratic Discriminant Analysis for Person Re-Identification. MVA 2019: 1-5 - 2018
- [c99]Einoshin Suzuki:
Exploiting Micro-Clusters to Close The Loop in Data-Mining Robots for Human Monitoring. AAAI Spring Symposia 2018 - [c98]Kaikai Zhao, Tetsu Matsukawa, Einoshin Suzuki:
Retraining: A Simple Way to Improve the Ensemble Accuracy of Deep Neural Networks for Image Classification. ICPR 2018: 860-867 - [c97]Soichiro Oura, Tetsu Matsukawa, Einoshin Suzuki:
Multimodal Deep Neural Network with Image Sequence Features for Video Captioning. IJCNN 2018: 1-7 - [c96]Hirofumi Fujita, Tetsu Matsukawa, Einoshin Suzuki:
One-class Selective Transfer Machine for Personalized Anomalous Facial Expression Detection. VISIGRAPP (5: VISAPP) 2018: 274-283 - 2017
- [j22]Yutaka Deguchi, Daisuke Takayama, Shigeru Takano, Vasile-Marian Scuturici, Jean-Marc Petit, Einoshin Suzuki:
Skeleton clustering by multi-robot monitoring for fall risk discovery. J. Intell. Inf. Syst. 48(1): 75-115 (2017) - [i1]Tetsu Matsukawa, Takahiro Okabe, Einoshin Suzuki, Yoichi Sato:
Hierarchical Gaussian Descriptors with Application to Person Re-Identification. CoRR abs/1706.04318 (2017) - 2016
- [j21]Shin Ando, Einoshin Suzuki:
Minimizing response time in time series classification. Knowl. Inf. Syst. 46(2): 449-476 (2016) - [c95]Tetsu Matsukawa, Takahiro Okabe, Einoshin Suzuki, Yoichi Sato:
Hierarchical Gaussian Descriptor for Person Re-identification. CVPR 2016: 1363-1372 - [c94]Tetsu Matsukawa, Einoshin Suzuki:
Person re-identification using CNN features learned from combination of attributes. ICPR 2016: 2428-2433 - 2015
- [j20]Shin Ando, Theerasak Thanomphongphan, Yoichi Seki, Einoshin Suzuki:
Ensemble anomaly detection from multi-resolution trajectory features. Data Min. Knowl. Discov. 29(1): 39-83 (2015) - [j19]Somar Boubou, Einoshin Suzuki:
Classifying actions based on histogram of oriented velocity vectors. J. Intell. Inf. Syst. 44(1): 49-65 (2015) - [c93]Vasile-Marian Scuturici, Yann Gripay, Jean-Marc Petit, Yutaka Deguchi, Einoshin Suzuki:
Continuous Query Processing Over Data, Streams and Services: Application to Robotics. ADBIS (Short Papers and Workshops) 2015: 36-43 - [c92]Yutaka Deguchi, Einoshin Suzuki:
Hidden Fatigue Detection for a Desk Worker Using Clustering of Successive Tasks. AmI 2015: 268-283 - [c91]Somar Boubou, A. H. Abdul Hafez, Einoshin Suzuki:
Visual impression localization of autonomous robots. CASE 2015: 328-334 - [c90]Einoshin Suzuki:
On the Feasibility of Discovering Meta-Patterns from a Data Ensemble. Discovery Science 2015: 266-274 - [c89]Kaikai Zhao, Einoshin Suzuki:
Clustering Classifiers Learnt from Local Datasets Based on Cosine Similarity. ISMIS 2015: 150-159 - [c88]Einoshin Suzuki, Yutaka Deguchi, Tetsu Matsukawa, Shin Ando, Hiroaki Ogata, Masanori Sugimoto:
Toward a platform for collecting, mining, and utilizing behavior data for detecting students with depression risks. PETRA 2015: 26:1-26:8 - 2014
- [j18]Bin Tong, Junbin Gao, Thach Huy Nguyen, Hao Shao, Einoshin Suzuki:
Transfer dimensionality reduction by Gaussian process in parallel. Knowl. Inf. Syst. 38(3): 567-597 (2014) - [j17]Daisuke Ikeda, Einoshin Suzuki:
Finding peculiar compositions of two frequent strings with background texts. Knowl. Inf. Syst. 41(2): 499-530 (2014) - [c87]Ryosuke Kondo, Yutaka Deguchi, Einoshin Suzuki:
Developing a Face Monitoring Robot for a Desk Worker. AmI 2014: 226-241 - [c86]Daisuke Takayama, Yutaka Deguchi, Shigeru Takano, Vasile-Marian Scuturici, Jean-Marc Petit, Einoshin Suzuki:
Multi-view Onboard Clustering of Skeleton Data for Fall Risk Discovery. AmI 2014: 258-273 - [c85]Angdy Erna, Linli Yu, Kaikai Zhao, Wei Chen, Einoshin Suzuki:
Facial Expression Data Constructed with Kinect and Their Clustering Stability. AMT 2014: 421-431 - [c84]Bin Tong, Tetsuro Morimura, Einoshin Suzuki, Tsuyoshi Idé:
Probabilistic Two-Level Anomaly Detection for Correlated Systems. ECAI 2014: 1109-1110 - [c83]Shin Ando, Einoshin Suzuki:
Discriminative Learning on Exemplary Patterns of Sequential Numerical Data. ICDM 2014: 1-10 - [c82]Yutaka Deguchi, Einoshin Suzuki:
Skeleton Clustering by Autonomous Mobile Robots for Subtle Fall Risk Discovery. ISMIS 2014: 500-505 - [c81]Yutaka Deguchi, Daisuke Takayama, Shigeru Takano, Vasile-Marian Scuturici, Jean-Marc Petit, Einoshin Suzuki:
Multiple-robot monitoring system based on a service-oriented DBMS. PETRA 2014: 47:1-47:8 - 2013
- [j16]Einoshin Suzuki:
Special Issue on Discovery Science: Guest Editor's Introduction. Comput. J. 56(3): 271-273 (2013) - [j15]Thach Huy Nguyen, Bin Tong, Hao Shao, Einoshin Suzuki:
Transfer learning by centroid pivoted mapping in noisy environment. J. Intell. Inf. Syst. 41(1): 39-60 (2013) - [j14]Hao Shao, Bin Tong, Einoshin Suzuki:
Extended MDL principle for feature-based inductive transfer learning. Knowl. Inf. Syst. 35(2): 365-389 (2013) - [j13]Thach Huy Nguyen, Hao Shao, Bin Tong, Einoshin Suzuki:
A feature-free and parameter-light multi-task clustering framework. Knowl. Inf. Syst. 36(1): 251-276 (2013) - [j12]Bin-Hui Chou, Einoshin Suzuki:
RoClust: Role discovery for graph clustering. Web Intell. Agent Syst. 11(1): 1-20 (2013) - [c80]Shigeru Takano, Ilya Loshchilov, David Meunier, Michèle Sebag, Einoshin Suzuki:
Fast Adaptive Object Detection towards a Smart Environment by a Mobile Robot. AmI 2013: 182-197 - [c79]Bin-Hui Chou, Einoshin Suzuki:
Detecting Academic Plagiarism with Graphs. EGC 2013: 293-304 - [c78]Einoshin Suzuki, Yutaka Deguchi, Daisuke Takayama, Shigeru Takano, Vasile-Marian Scuturici, Jean-Marc Petit:
Towards Facilitating the Development of Monitoring Systems with Low-Cost Autonomous Mobile Robots. ISIP 2013: 57-70 - [c77]Shin Ando, Einoshin Suzuki:
Time-sensitive Classification of Behavioral Data. SDM 2013: 458-466 - 2012
- [j11]Bin Tong, Weifeng Jia, Yanli Ji, Einoshin Suzuki:
Linear Semi-Supervised Dimensionality Reduction with Pairwise Constraint for Multiple Subclasses. IEICE Trans. Inf. Syst. 95-D(3): 812-820 (2012) - [j10]Bin Tong, Hao Shao, Bin-Hui Chou, Einoshin Suzuki:
Linear semi-supervised projection clustering by transferred centroid regularization. J. Intell. Inf. Syst. 39(2): 461-490 (2012) - [c76]Hao Shao, Bin Tong, Einoshin Suzuki:
Query by Committee in a Heterogeneous Environment. ADMA 2012: 186-198 - [c75]Einoshin Suzuki, Emi Matsumoto, Asuki Kouno:
Data Squashing for HSV Subimages by an Autonomous Mobile Robot. Discovery Science 2012: 95-109 - [c74]Kouhei Takemoto, Shigeru Takano, Einoshin Suzuki:
Human Detection by a Small Autonomous Mobile Robot. EGC 2012: 531-536 - [c73]Asuki Kouno, Daisuke Takayama, Einoshin Suzuki:
Predicting the State of a Person by an Office-Use Autonomous Mobile Robot. IAT 2012: 80-84 - [c72]Shinsuke Sugaya, Daisuke Takayama, Asuki Kouno, Einoshin Suzuki:
Intelligent Data Analysis by a Home-Use Human Monitoring Robot. IDA 2012: 381-391 - 2011
- [c71]Bin-Hui Chou, Einoshin Suzuki:
Role Discovery for Graph Clustering. APWeb 2011: 17-28 - [c70]Hiroshi Hirai, Bin-Hui Chou, Einoshin Suzuki:
A Parameter-Free Method for Discovering Generalized Clusters in a Network. Discovery Science 2011: 135-149 - [c69]Asuki Kouno, Jean-Marc Montanier, Shigeru Takano, Nicolas Bredèche, Marc Schoenauer, Michèle Sebag, Einoshin Suzuki:
On-Board Evolutionary Algorithm and Off-Line Rule Discovery for Column Formation in Swarm Robotics. IAT 2011: 220-227 - [c68]Shin Ando, Einoshin Suzuki:
Role-Behavior Analysis from Trajectory Data by Cross-Domain Learning. ICDM 2011: 21-30 - [c67]Somar Boubou, Asuki Kouno, Einoshin Suzuki:
Implementing Camshift on a Mobile Robot for Person Tracking and Pursuit. ICDM Workshops 2011: 682-688 - [c66]Shigeru Takano, Einoshin Suzuki:
New Object Detection for On-board Robot Vision by Lifting Complex Wavelet Transforms. ICDM Workshops 2011: 911-916 - [c65]Emi Matsumoto, Michèle Sebag, Einoshin Suzuki:
Using SVM to Avoid Humans: A Case of a Small Autonomous Mobile Robot in an Office. ISCIS 2011: 283-287 - [c64]Thach Huy Nguyen, Hao Shao, Bin Tong, Einoshin Suzuki:
A Compression-Based Dissimilarity Measure for Multi-task Clustering. ISMIS 2011: 123-132 - [c63]Hao Shao, Bin Tong, Einoshin Suzuki:
Compact Coding for Hyperplane Classifiers in Heterogeneous Environment. ECML/PKDD (3) 2011: 207-222 - [c62]Shin Ando, Einoshin Suzuki, Yoichi Seki, Theerasak Thanongphongphan, Daisuke Hoshino:
ACE: Anomaly Clustering Ensemble for Multi-perspective Anomaly Detection in Robot Behaviors. SDM 2011: 1-12 - [c61]Hao Shao, Einoshin Suzuki:
Feature-based Inductive Transfer Learning through Minimum Encoding. SDM 2011: 259-270 - [c60]Bin Tong, Junbin Gao, Thach Huy Nguyen, Einoshin Suzuki:
Gaussian Process for Dimensionality Reduction in Transfer Learning. SDM 2011: 783-794 - [e6]Jomi Fred Hübner, Jean-Marc Petit, Einoshin Suzuki:
Proceedings of the 2011 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2011, Campus Scientifique de la Doua, Lyon, France, August 22-27, 2011. IEEE Computer Society 2011 [contents] - 2010
- [j9]Takashi Washio, Einoshin Suzuki, Kai Ming Ting:
Best papers from the 12th Pacific-Asia conference on knowledge discovery and data mining (PAKDD2008). Knowl. Inf. Syst. 25(2): 209-210 (2010) - [c59]Asuki Kouno, Shigeru Takano, Einoshin Suzuki:
Constructing Low-Cost Swarm Robots That March in Column Formation. ANTS Conference 2010: 556-557 - [c58]Bin-Hui Chou, Einoshin Suzuki:
Discovering Community-Oriented Roles of Nodes in a Social Network. DaWak 2010: 52-64 - [c57]Bin Tong, Zhiguang Qin, Einoshin Suzuki:
Topology Preserving SOM with Transductive Confidence Machine. Discovery Science 2010: 27-41 - [c56]Swagat Kumar, Thach Huy Nguyen, Einoshin Suzuki:
Understanding the Behaviour of Reactive Robots in a Patrol Task by Analysing Their Trajectories. IAT 2010: 56-63 - [c55]Bin Tong, Einoshin Suzuki:
Subclass-Oriented Dimension Reduction with Constraint Transformation and Manifold Regularization. PAKDD (2) 2010: 1-13 - [c54]Bin Tong, Hao Shao, Bin-Hui Chou, Einoshin Suzuki:
Semi-supervised Projection Clustering with Transferred Centroid Regularization. ECML/PKDD (3) 2010: 306-321
2000 – 2009
- 2009
- [c53]JianBin Wang, Bin-Hui Chou, Einoshin Suzuki:
Finding the k-Most Abnormal Subgraphs from a Single Graph. Discovery Science 2009: 441-448 - [c52]Hiroshi Hirai, Shigeru Takano, Einoshin Suzuki:
Simulating Swarm Robots for Collision Avoidance Problem Based on a Dynamic Bayesian Network. ECAL (2) 2009: 416-423 - [c51]Einoshin Suzuki:
Compression-Based Measures for Mining Interesting Rules. IEA/AIE 2009: 741-746 - [c50]Shin Ando, Einoshin Suzuki:
Detection of unique temporal segments by information theoretic meta-clustering. KDD 2009: 59-68 - [c49]Einoshin Suzuki:
Negative Encoding Length as a Subjective Interestingness Measure for Groups of Rules. PAKDD 2009: 220-231 - [c48]Einoshin Suzuki:
Discovering Action Rules That Are Highly Achievable from Massive Data. PAKDD 2009: 713-722 - [c47]Daisuke Ikeda, Einoshin Suzuki:
Mining Peculiar Compositions of Frequent Substrings from Sparse Text Data Using Background Texts. ECML/PKDD (1) 2009: 596-611 - 2008
- [c46]Shin Ando, Einoshin Suzuki:
Unsupervised Cross-Domain Learning by Interaction Information Co-clustering. ICDM 2008: 13-22 - [p1]Einoshin Suzuki:
Pitfalls for Categorizations of Objective Interestingness Measures for Rule Discovery. Statistical Implicative Analysis 2008: 383-395 - [e5]Takashi Washio, Einoshin Suzuki, Kai Ming Ting, Akihiro Inokuchi:
Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia Conference, PAKDD 2008, Osaka, Japan, May 20-23, 2008 Proceedings. Lecture Notes in Computer Science 5012, Springer 2008, ISBN 978-3-540-68124-3 [contents] - [e4]Régis Gras, Einoshin Suzuki, Fabrice Guillet, Filippo Spagnolo:
Statistical Implicative Analysis, Theory and Applications. Studies in Computational Intelligence 127, Springer 2008, ISBN 978-3-540-78982-6 [contents] - 2007
- [j8]Marie Agier, Jean-Marc Petit, Einoshin Suzuki:
Unifying Framework for Rule Semantics: Application to Gene Expression Data. Fundam. Informaticae 78(4): 543-559 (2007) - [j7]Masatoshi Jumi, Muneaki Ohshima, Ning Zhong, Hideto Yokoi, Katsuhiko Takabayashi, Einoshin Suzuki:
Spiral Removal of Exceptional Patients for Mining Chronic Hepatitis Data. New Gener. Comput. 25(3): 223-234 (2007) - [c45]Einoshin Suzuki:
Peut-on Capturer la Sémantique à Travers la Syntaxe ? - Découverte des Règles d'Exception Simultanée. EGC 2007: 1 - [c44]Régis Gras, Pascale Kuntz, Einoshin Suzuki:
Une règle d'exception en Analyse Statistique Implicative. EGC 2007: 87-98 - [e3]Vincent Corruble, Masayuki Takeda, Einoshin Suzuki:
Discovery Science, 10th International Conference, DS 2007, Sendai, Japan, October 1-4, 2007, Proceedings. Lecture Notes in Computer Science 4755, Springer 2007, ISBN 978-3-540-75487-9 [contents] - 2006
- [j6]Einoshin Suzuki:
Data Mining Methods for Discovering Interesting Exceptions from an Unsupervised Table. J. Univers. Comput. Sci. 12(6): 627-653 (2006) - [c43]Shin Ando, Einoshin Suzuki:
Distributed Multi-objective GA for Generating Comprehensive Pareto Front in Deceptive Optimization Problems. IEEE Congress on Evolutionary Computation 2006: 1569-1576 - [c42]Yukihiro Nakamura, Shin Ando, Kenji Aoki, Hiroyuki Mano, Einoshin Suzuki:
Strategy Diagram for Identifying Play Strategies in Multi-view Soccer Video Data. Discovery Science 2006: 173-184 - [c41]Jérôme Maloberti, Shin Ando, Einoshin Suzuki:
Classification non-supervisée de données relationnelles. EGC 2006: 389-390 - [c40]Masayuki Hirose, Einoshin Suzuki:
DPITT: Multi-viewpoint Visualization System for Detecting Peculiar WWW Pages Rapidly. GrC 2006: 538-541 - [c39]Shin Ando, Einoshin Suzuki:
An Information Theoretic Approach to Detection of Minority Subsets in Database. ICDM 2006: 11-20 - [c38]Nicolas Durand, Bruno Crémilleux, Einoshin Suzuki:
Visualizing Transactional Data with Multiple Clusterings for Knowledge Discovery. ISMIS 2006: 47-57 - [c37]Einoshin Suzuki, Shin Ando, Masayuki Hirose, Masatoshi Jumi:
Intuitive Display for Search Engines Toward Fast Detection of Peculiar WWW Pages. WImBI 2006: 341-352 - 2005
- [j5]Einoshin Suzuki:
Worst Case and a Distribution-Based Case Analyses of Sampling for Rule Discovery Based on Generality and Accuracy. Appl. Intell. 22(1): 29-36 (2005) - [j4]Einoshin Suzuki, Jan M. Zytkow:
Unified algorithm for undirected discovery of exception rules. Int. J. Intell. Syst. 20(7): 673-691 (2005) - [c36]Shin Ando, Einoshin Suzuki, Shigenobu Kobayashi:
Sample based crowding method for multimodal optimization in continuous domain. Congress on Evolutionary Computation 2005: 1867-1874 - [c35]Masanori Yoshinaga, Yukihiro Nakamura, Einoshin Suzuki:
Mini-Car-Soccer as a testbed for granular computing. GrC 2005: 92-97 - [c34]Masatoshi Jumi, Einoshin Suzuki, Muneaki Ohshima, Ning Zhong, Hideto Yokoi, Katsuhiko Takabayashi:
Multi-strategy Instance Selection in Mining Chronic Hepatitis Data. ISMIS 2005: 475-484 - [c33]Marie Agier, Jean-Marc Petit, Einoshin Suzuki:
Towards Ad-Hoc Rule Semantics for Gene Expression Data. ISMIS 2005: 494-503 - 2004
- [c32]Einoshin Suzuki:
Undirected Exception Rule Discovery as Local Pattern Detection. Local Pattern Detection 2004: 207-216 - [c31]Masayuki Hirose, Einoshin Suzuki:
Using WWW-Distribution of Words in Detecting Peculiar Web Pages. Discovery Science 2004: 355-362 - [c30]Jérôme Maloberti, Einoshin Suzuki:
An Efficient Algorithm for Reducing Clauses Based on Constraint Satisfaction Techniques. ILP 2004: 234-251 - [c29]Masatoshi Jumi, Einoshin Suzuki, Muneaki Ohshima, Ning Zhong, Hideto Yokoi, Katsuhiko Takabayashi:
Spiral Discovery of a Separate Prediction Model from Chronic Hepatitis Data. JSAI Workshops 2004: 464-473 - [e2]Einoshin Suzuki, Setsuo Arikawa:
Discovery Science, 7th International Conference, DS 2004, Padova, Italy, October 2-5, 2004, Proceedings. Lecture Notes in Computer Science 3245, Springer 2004, ISBN 3-540-23357-1 [contents] - 2003
- [c28]Yuu Yamada, Einoshin Suzuki, Hideto Yokoi, Katsuhiko Takabayashi:
Experimental Evaluation of Time-Series Decision Tree. Active Mining 2003: 190-209 - [c27]Jérôme Maloberti, Einoshin Suzuki:
Improving Efficiency of Frequent Query Discovery by Eliminating Non-relevant Candidates. Discovery Science 2003: 220-232 - [c26]Einoshin Suzuki, Takeshi Watanabe, Hideto Yokoi, Katsuhiko Takabayashi:
Detecting Interesting Exceptions from Medical Test Data with Visual Summarization. ICDM 2003: 315-322 - [c25]Yuu Yamada, Einoshin Suzuki, Hideto Yokoi, Katsuhiko Takabayashi:
Decision-tree Induction from Time-series Data Based on a Standard-example Split Test. ICML 2003: 840-847 - [c24]Masaki Narahashi, Einoshin Suzuki:
Detecting Hostile Accesses through Incremental Subspace Clustering. Web Intelligence 2003: 337-343 - [e1]Ning Zhong, Zbigniew W. Ras, Shusaku Tsumoto, Einoshin Suzuki:
Foundations of Intelligent Systems, 14th International Symposium, ISMIS 2003, Maebashi City, Japan, October 28-31, 2003, Proceedings. Lecture Notes in Computer Science 2871, Springer 2003, ISBN 3-540-20256-0 [contents] - 2002
- [j3]Einoshin Suzuki:
Undirected Discovery of Interesting Exception Rules. Int. J. Pattern Recognit. Artif. Intell. 16(8): 1065-1086 (2002) - [c23]Masaki Narahashi, Einoshin Suzuki:
Subspace Clustering Based on Compressibility. Discovery Science 2002: 435-440 - [c22]Einoshin Suzuki:
In Pursuit of Interesting Patterns with Undirected Discovery of Exception Rules. Progress in Discovery Science 2002: 504-517 - [c21]Yuu Yamada, Einoshin Suzuki:
Toward knowledge-driven spiral discovery of exception rules. FUZZ-IEEE 2002: 872-877 - [c20]Fumio Takechi, Einoshin Suzuki:
Finding an Optimal Gain-Ratio Subset-Split Test for a Set-Valued Attribute in Decision Tree Induction. ICML 2002: 618-625 - [c19]Shutaro Inatani, Einoshin Suzuki:
Data Squashing for Speeding Up Boosting-Based Outlier Detection. ISMIS 2002: 601-612 - [c18]Yuta Choki, Einoshin Suzuki:
Iterative Data Squashing for Boosting Based on a Distribution-Sensitive Distance. PKDD 2002: 86-98 - 2001
- [c17]Einoshin Suzuki:
Worst-Case Analysis of Rule Discovery. Discovery Science 2001: 365-377 - [c16]Einoshin Suzuki, Masafumi Gotoh, Yuta Choki:
Bloomy Decision Tree for Multi-objective Classification. PKDD 2001: 436-447 - 2000
- [c15]Einoshin Suzuki:
Issues in Organizing a Successful Knowledge Discovery Contest. Discovery Science 2000: 282-284 - [c14]Farhad Hussain, Huan Liu, Einoshin Suzuki, Hongjun Lu:
Exception Rule Mining with a Relative Interestingness Measure. PAKDD 2000: 86-97 - [c13]Einoshin Suzuki, Shusaku Tsumoto:
Evaluating Hypothesis-Driven Exception-Rule Discovery with Medical Data Sets. PAKDD 2000: 208-211 - [c12]Einoshin Suzuki, Jan M. Zytkow:
Unified Algorithm for Undirected Discovery of Execption Rules. PKDD 2000: 169-180 - [c11]David Ramamonjisoa, Einoshin Suzuki, Issam A. Hamid:
Research Topics Discovery from WWW by Keywords Association Rules. Rough Sets and Current Trends in Computing 2000: 412-419
1990 – 1999
- 1999
- [c10]Einoshin Suzuki:
Scheduled Discovery of Exception Rules. Discovery Science 1999: 184-195 - [c9]Shinsuke Sugaya, Einoshin Suzuki:
Normal Form Transformation for Object Recognition Based on Support Vector Machines. Discovery Science 1999: 306-315 - [c8]Einoshin Suzuki, Toru Ohno:
Prediction Rule Discovery Based on Dynamic Bias Selection. PAKDD 1999: 504-508 - [c7]Shinsuke Sugaya, Einoshin Suzuki, Shusaku Tsumoto:
Support Vector Machines for Knowledge Discovery. PKDD 1999: 561-567 - [c6]Einoshin Suzuki, Hiroki Ishihara:
Visualizing Discovered Rule Sets with Visual Graphs Based on Compressed Entropy Density. RSFDGrC 1999: 414-422 - 1998
- [c5]Einoshin Suzuki:
Simultaneous Reliability Evaluation of Generality and Accuracy for Rule Discovery in Databases. KDD 1998: 339-343 - [c4]Einoshin Suzuki, Yves Kodratoff:
Discovery of Surprising Exception Rules Based on Intensity of Implication. PKDD 1998: 10-18 - 1997
- [c3]Einoshin Suzuki:
Autonomous Discovery of Reliable Exception Rules. KDD 1997: 259-262 - 1996
- [c2]Einoshin Suzuki, Masamichi Shimura:
Exceptional Knowledge Discovery in Databases Based on Information Theory. KDD 1996: 275-278 - 1994
- [c1]Pierre Morizet-Mahoudeaux, Einoshin Suzuki, Setsuo Ohsuga:
Knowledge-Based Handling of Design Expertise. ICDE 1994: 368-374 - 1993
- [j2]Einoshin Suzuki, Tatsuya Akutsu, Setsuo Ohsuga:
Knowledge-based system for computer-aided drug design. Knowl. Based Syst. 6(2): 114-126 (1993) - 1991
- [j1]Tatsuya Akutsu, Einoshin Suzuki, Setsuo Ohsuga:
Logic-based approach to expert systems in chemistry. Knowl. Based Syst. 4(2): 103-116 (1991)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-06-26 21:21 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint