default search action
Neil D. Lawrence
Neil David Lawrence
Person information
- affiliation: University of Cambridge, UK
- affiliation: University of Sheffield, Department of Computer Science
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c89]Andrei Paleyes, Han-Bo Li, Neil D. Lawrence:
Can causality accelerate experimentation in software systems? CAIN 2024: 280-281 - [c88]Christian Cabrera, Andrei Paleyes, Neil D. Lawrence:
Self-sustaining Software Systems (S4): Towards Improved Interpretability and Adaptation. SATrends 2024: 5-9 - [i65]Christian Cabrera, Andrei Paleyes, Neil D. Lawrence:
Self-sustaining Software Systems (S4): Towards Improved Interpretability and Adaptation. CoRR abs/2401.11370 (2024) - [i64]Sarah Zhao, Aditya Ravuri, Vidhi Lalchand, Neil D. Lawrence:
Scalable Amortized GPLVMs for Single Cell Transcriptomics Data. CoRR abs/2405.03879 (2024) - [i63]Diana Robinson, Christian Cabrera, Andrew D. Gordon, Neil D. Lawrence, Lars Mennen:
Requirements are All You Need: The Final Frontier for End-User Software Engineering. CoRR abs/2405.13708 (2024) - [i62]Aditya Ravuri, Neil D. Lawrence:
Towards One Model for Classical Dimensionality Reduction: A Probabilistic Perspective on UMAP and t-SNE. CoRR abs/2405.17412 (2024) - [i61]Aditya Ravuri, Jen Muir, Neil D. Lawrence:
On Feature Learning for Titi Monkey Activity Detection. CoRR abs/2407.01452 (2024) - 2023
- [j44]Andrei Paleyes, Raoul-Gabriel Urma, Neil D. Lawrence:
Challenges in Deploying Machine Learning: A Survey of Case Studies. ACM Comput. Surv. 55(6): 114:1-114:29 (2023) - [j43]Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, Neil D. Lawrence:
Correction: Vargas et al. Solving Schrödinger Bridges via Maximum Likelihood. Entropy 2021, 23, 1134. Entropy 25(2): 289 (2023) - [j42]Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D. Lawrence, Nikolas Nüsken:
Bayesian learning via neural Schrödinger-Föllmer flows. Stat. Comput. 33(1): 3 (2023) - [c87]Andrei Paleyes, Siyuan Guo, Bernhard Schölkopf, Neil D. Lawrence:
Dataflow graphs as complete causal graphs. CAIN 2023: 7-12 - [c86]Andrei Paleyes, Neil David Lawrence:
Causal fault localisation in dataflow systems. EuroMLSys@EuroSys 2023: 140-147 - [i60]Christian Cabrera, Andrei Paleyes, Pierre Thodoroff, Neil D. Lawrence:
Real-world Machine Learning Systems: A survey from a Data-Oriented Architecture Perspective. CoRR abs/2302.04810 (2023) - [i59]Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, Jessica Montgomery:
AI for Science: An Emerging Agenda. CoRR abs/2303.04217 (2023) - [i58]Andrei Paleyes, Siyuan Guo, Bernhard Schölkopf, Neil D. Lawrence:
Dataflow graphs as complete causal graphs. CoRR abs/2303.09552 (2023) - [i57]Aditya Ravuri, Francisco Vargas, Vidhi Lalchand, Neil D. Lawrence:
Dimensionality Reduction as Probabilistic Inference. CoRR abs/2304.07658 (2023) - [i56]Andrei Paleyes, Neil D. Lawrence:
Causal fault localisation in dataflow systems. CoRR abs/2304.11987 (2023) - [i55]Bogdan Ficiu, Neil D. Lawrence, Andrei Paleyes:
Automated discovery of trade-off between utility, privacy and fairness in machine learning models. CoRR abs/2311.15691 (2023) - 2022
- [c85]Vidhi Lalchand, Aditya Ravuri, Neil D. Lawrence:
Generalised GPLVM with Stochastic Variational Inference. AISTATS 2022: 7841-7864 - [c84]Sijia Li, Martín López-García, Neil D. Lawrence, Luisa Cutillo:
Two-way Sparse Network Inference for Count Data. AISTATS 2022: 10924-10938 - [c83]Andrei Paleyes, Christian Cabrera, Neil D. Lawrence:
An empirical evaluation of flow based programming in the machine learning deployment context. CAIN 2022: 54-64 - [c82]Vidhi Lalchand, Aditya Ravuri, Emma Dann, Natsuhiko Kumasaka, Dinithi Sumanaweera, Rik G. H. Lindeboom, Shaista Madad, Sarah A. Teichmann, Neil D. Lawrence:
Modelling Technical and Biological Effects in scRNA-seq data with Scalable GPLVMs. MLCB 2022: 46-60 - [c81]Samuel J. Bell, Onno Kampman, Jesse Dodge, Neil D. Lawrence:
Modeling the Machine Learning Multiverse. NeurIPS 2022 - [i54]Vidhi Lalchand, Aditya Ravuri, Neil D. Lawrence:
Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference. CoRR abs/2202.12979 (2022) - [i53]Sijia Li, Martín López-García, Neil D. Lawrence, Luisa Cutillo:
Scalable Bigraphical Lasso: Two-way Sparse Network Inference for Count Data. CoRR abs/2203.07912 (2022) - [i52]Andrei Paleyes, Christian Cabrera, Neil D. Lawrence:
An Empirical Evaluation of Flow Based Programming in the Machine Learning Deployment Context. CoRR abs/2204.12781 (2022) - [i51]Samuel J. Bell, Neil D. Lawrence:
The Effect of Task Ordering in Continual Learning. CoRR abs/2205.13323 (2022) - [i50]Samuel J. Bell, Onno Pepijn Kampman, Jesse Dodge, Neil D. Lawrence:
Modeling the Machine Learning Multiverse. CoRR abs/2206.05985 (2022) - [i49]Vidhi Lalchand, Aditya Ravuri, Emma Dann, Natsuhiko Kumasaka, Dinithi Sumanaweera, Rik G. H. Lindeboom, Shaista Madad, Sarah A. Teichmann, Neil D. Lawrence:
Modelling Technical and Biological Effects in scRNA-seq data with Scalable GPLVMs. CoRR abs/2209.06716 (2022) - [i48]Aditya Ravuri, Tom R. Andersson, Ieva Kazlauskaite, Will Tebbutt, Richard E. Turner, J. Scott Hosking, Neil D. Lawrence, Markus Kaiser:
Ice Core Dating using Probabilistic Programming. CoRR abs/2210.16568 (2022) - [i47]Philipp Berens, Kyle Cranmer, Neil D. Lawrence, Ulrike von Luxburg, Jessica Montgomery:
Machine Learning for Science: Bridging Data-Driven and Mechanistic Modelling (Dagstuhl Seminar 22382). Dagstuhl Reports 12(9): 150-199 (2022) - 2021
- [j41]Francisco Vargas, Pierre Thodoroff, Austen Lamacraft, Neil D. Lawrence:
Solving Schrödinger Bridges via Maximum Likelihood. Entropy 23(9): 1134 (2021) - [j40]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis. J. Mach. Learn. Res. 22: 86:1-86:51 (2021) - [j39]Michael Thomas Smith, Mauricio A. Álvarez, Neil D. Lawrence:
Differentially Private Regression and Classification with Sparse Gaussian Processes. J. Mach. Learn. Res. 22: 188:1-188:41 (2021) - [c80]Pierre Thodoroff, Wenyu Li, Neil D. Lawrence:
Benchmarking Real-Time Reinforcement Learning. Pre-Registration Workshop @ NeurIPS 2021: 26-41 - [i46]Francisco Vargas, Pierre Thodoroff, Neil D. Lawrence, Austen Lamacraft:
Solving Schrödinger Bridges via Maximum Likelihood. CoRR abs/2106.02081 (2021) - [i45]Andrei Paleyes, Christian Cabrera, Neil D. Lawrence:
Exploring the potential of flow-based programming for machine learning deployment in comparison with service-oriented architectures. CoRR abs/2108.04105 (2021) - [i44]Corinna Cortes, Neil D. Lawrence:
Inconsistency in Conference Peer Review: Revisiting the 2014 NeurIPS Experiment. CoRR abs/2109.09774 (2021) - [i43]Samuel J. Bell, Neil D. Lawrence:
Behavioral Experiments for Understanding Catastrophic Forgetting. CoRR abs/2110.10570 (2021) - [i42]Andrei Paleyes, Mark Pullin, Maren Mahsereci, Cliff McCollum, Neil D. Lawrence, Javier González:
Emulation of physical processes with Emukit. CoRR abs/2110.13293 (2021) - [i41]Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D. Lawrence, Nikolas Nüsken:
Bayesian Learning via Neural Schrödinger-Föllmer Flows. CoRR abs/2111.10510 (2021) - 2020
- [j38]Bei Wang, Zhichao Li, Zhenwen Dai, Neil D. Lawrence, Xuefeng Yan:
Data-Driven Mode Identification and Unsupervised Fault Detection for Nonlinear Multimode Processes. IEEE Trans. Ind. Informatics 16(6): 3651-3661 (2020) - [c79]Shell Xu Hu, Pablo Garcia Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D. Lawrence, Andreas C. Damianou:
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients. ICLR 2020 - [i40]Shell Xu Hu, Pablo Garcia Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil D. Lawrence, Andreas C. Damianou:
Empirical Bayes Transductive Meta-Learning with Synthetic Gradients. CoRR abs/2004.12696 (2020) - [i39]Andrei Paleyes, Raoul-Gabriel Urma, Neil D. Lawrence:
Challenges in Deploying Machine Learning: a Survey of Case Studies. CoRR abs/2011.09926 (2020)
2010 – 2019
- 2019
- [j37]Bei Wang, Zhichao Li, Zhenwen Dai, Neil D. Lawrence, Xuefeng Yan:
A probabilistic principal component analysis-based approach in process monitoring and fault diagnosis with application in wastewater treatment plant. Appl. Soft Comput. 82 (2019) - [j36]Simo Särkkä, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems. IEEE Trans. Autom. Control. 64(7): 2953-2960 (2019) - [c78]Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou, Neil D. Lawrence, Zhenwen Dai:
Variational Information Distillation for Knowledge Transfer. CVPR 2019: 9163-9171 - [c77]Sebastian Flennerhag, Pablo Garcia Moreno, Neil D. Lawrence, Andreas C. Damianou:
Transferring Knowledge across Learning Processes. ICLR 2019 - [c76]Aaron Klein, Zhenwen Dai, Frank Hutter, Neil D. Lawrence, Javier González:
Meta-Surrogate Benchmarking for Hyperparameter Optimization. NeurIPS 2019: 6267-6277 - [c75]Alan F. Blackwell, Luke Church, Martin Erwig, James Geddes, Andy Gordon, Maria I. Gorinova, Atilim Gunes Baydin, Bradley Gram-Hansen, Tobias Kohn, Neil D. Lawrence, Vikash Mansinghka, Brooks Paige, Tomas Petricek, Diana Robinson, Advait Sarkar, Oliver Strickson:
Usability of Probabilistic Programming Languages. PPIG 2019 - [i38]Kurt Cutajar, Mark Pullin, Andreas C. Damianou, Neil D. Lawrence, Javier González:
Deep Gaussian Processes for Multi-fidelity Modeling. CoRR abs/1903.07320 (2019) - [i37]Neil D. Lawrence:
Data Science and Digital Systems: The 3Ds of Machine Learning Systems Design. CoRR abs/1903.11241 (2019) - [i36]Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou, Neil D. Lawrence, Zhenwen Dai:
Variational Information Distillation for Knowledge Transfer. CoRR abs/1904.05835 (2019) - [i35]Aaron Klein, Zhenwen Dai, Frank Hutter, Neil D. Lawrence, Javier González:
Meta-Surrogate Benchmarking for Hyperparameter Optimization. CoRR abs/1905.12982 (2019) - [i34]Michael Thomas Smith, Mauricio A. Álvarez, Neil D. Lawrence:
Differentially Private Regression and Classification with Sparse Gaussian Processes. CoRR abs/1909.09147 (2019) - 2018
- [c74]Michael T. Smith, Mauricio A. Álvarez, Max Zwiessele, Neil D. Lawrence:
Differentially Private Regression with Gaussian Processes. AISTATS 2018: 1195-1203 - [c73]Xiaoyu Lu, Javier González, Zhenwen Dai, Neil D. Lawrence:
Structured Variationally Auto-encoded Optimization. ICML 2018: 3273-3281 - [i33]Mu Niu, Pokman Cheung, Lizhen Lin, Zhenwen Dai, Neil D. Lawrence, David B. Dunson:
Intrinsic Gaussian processes on complex constrained domains. CoRR abs/1801.01061 (2018) - [i32]Michael Thomas Smith, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Regression for Binned Data. CoRR abs/1809.02010 (2018) - [i31]Sebastian Flennerhag, Pablo Garcia Moreno, Neil D. Lawrence, Andreas C. Damianou:
Transferring Knowledge across Learning Processes. CoRR abs/1812.01054 (2018) - 2017
- [j35]Zhenwen Dai, Mudassar Iqbal, Neil D. Lawrence, Magnus Rattray:
Efficient inference for sparse latent variable models of transcriptional regulation. Bioinform. 33(23): 3776-3783 (2017) - [c72]Javier González, Zhenwen Dai, Andreas C. Damianou, Neil D. Lawrence:
Preferential Bayesian Optimization. ICML 2017: 1282-1291 - [c71]Alexander Grigorievskiy, Neil D. Lawrence, Simo Särkkä:
Parallelizable sparse inverse formulation Gaussian processes (SpInGP). MLSP 2017: 1-6 - [c70]Zhenwen Dai, Mauricio A. Álvarez, Neil D. Lawrence:
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes. NIPS 2017: 5131-5139 - [i30]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Manifold Alignment Determination: finding correspondences across different data views. CoRR abs/1701.03449 (2017) - [i29]Neil D. Lawrence:
Data Readiness Levels. CoRR abs/1705.02245 (2017) - [i28]Neil D. Lawrence:
Living Together: Mind and Machine Intelligence. CoRR abs/1705.07996 (2017) - [i27]Zhenwen Dai, Mauricio A. Álvarez, Neil D. Lawrence:
Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes. CoRR abs/1705.09862 (2017) - [i26]Simo Särkkä, Mauricio A. Álvarez, Neil D. Lawrence:
Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems. CoRR abs/1709.05409 (2017) - [i25]Matthias W. Seeger, Asmus Hetzel, Zhenwen Dai, Neil D. Lawrence:
Auto-Differentiating Linear Algebra. CoRR abs/1710.08717 (2017) - 2016
- [j34]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes. J. Mach. Learn. Res. 17: 42:1-42:62 (2016) - [j33]Nicolas Durrande, James Hensman, Magnus Rattray, Neil D. Lawrence:
Detecting periodicities with Gaussian processes. PeerJ Comput. Sci. 2: e50 (2016) - [c69]Javier González, Zhenwen Dai, Philipp Hennig, Neil D. Lawrence:
Batch Bayesian Optimization via Local Penalization. AISTATS 2016: 648-657 - [c68]Javier González, Michael A. Osborne, Neil D. Lawrence:
GLASSES: Relieving The Myopia Of Bayesian Optimisation. AISTATS 2016: 790-799 - [c67]Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:
Chained Gaussian Processes. AISTATS 2016: 1431-1440 - [c66]Muhammad Arifur Rahman, Neil D. Lawrence:
A Gaussian Process Model for Inferring the Dynamic Transcription Factor Activity. BCB 2016: 495-496 - [c65]Daniel Camilleri, Andreas C. Damianou, Harry Jackson, Neil D. Lawrence, Tony J. Prescott:
iCub Visual Memory Inspector: Visualising the iCub's Thoughts. Living Machines 2016: 48-57 - [c64]Uriel Martinez-Hernandez, Andreas C. Damianou, Daniel Camilleri, Luke W. Boorman, Neil D. Lawrence, Tony J. Prescott:
An integrated probabilistic framework for robot perception, learning and memory. ROBIO 2016: 1796-1801 - [c63]Zhenwen Dai, Andreas C. Damianou, Javier González, Neil D. Lawrence:
Variational Auto-encoded Deep Gaussian Processes. ICLR (Poster) 2016 - [c62]César Lincoln C. Mattos, Zhenwen Dai, Andreas C. Damianou, Jeremy Forth, Guilherme A. Barreto, Neil D. Lawrence:
Recurrent Gaussian Processes. ICLR (Poster) 2016 - [i24]Andreas C. Damianou, Neil D. Lawrence, Carl Henrik Ek:
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis. CoRR abs/1604.04939 (2016) - [i23]Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence:
Chained Gaussian Processes. CoRR abs/1604.05263 (2016) - [i22]Michael T. Smith, Max Zwiessele, Neil D. Lawrence:
Differentially Private Gaussian Processes. CoRR abs/1606.00720 (2016) - [i21]Fariba Yousefi, Zhenwen Dai, Carl Henrik Ek, Neil D. Lawrence:
Unsupervised Learning with Imbalanced Data via Structure Consolidation Latent Variable Model. CoRR abs/1607.00067 (2016) - [i20]Brenden M. Lake, Neil D. Lawrence, Joshua B. Tenenbaum:
The Emergence of Organizing Structure in Conceptual Representation. CoRR abs/1611.09384 (2016) - [i19]Nicolas Durrande, James Hensman, Magnus Rattray, Neil D. Lawrence:
Detecting periodicities with Gaussian processes. PeerJ Prepr. 4: e1743 (2016) - 2015
- [j32]Gennaro Gambardella, Ivana Peluso, Sandro Montefusco, Mukesh Bansal, Diego L. Medina, Neil D. Lawrence, Diego di Bernardo:
A reverse-engineering approach to dissect post-translational modulators of transcription factor's activity from transcriptional data. BMC Bioinform. 16: 279:1-279:9 (2015) - [j31]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast Nonparametric Clustering of Structured Time-Series. IEEE Trans. Pattern Anal. Mach. Intell. 37(2): 383-393 (2015) - [c61]Andreas C. Damianou, Carl Henrik Ek, Luke Boorman, Neil D. Lawrence, Tony J. Prescott:
A Top-Down Approach for a Synthetic Autobiographical Memory System. Living Machines 2015: 280-292 - [c60]Ricardo Andrade Pacheco, Martin Gordon Mubangizi, John A. Quinn, Neil D. Lawrence:
Monitoring Short Term Changes of Malaria Incidence in Uganda with Gaussian Processes. AALTD@PKDD/ECML 2015 - [c59]Ricardo Andrade Pacheco, Martin Gordon Mubangizi, John A. Quinn, Neil D. Lawrence:
Monitoring Short Term Changes of Infectious Diseases in Uganda with Gaussian Processes. AALTD@PKDD/ECML (Revised Selected Papers) 2015: 95-110 - [c58]Andreas C. Damianou, Neil D. Lawrence:
Semi-described and semi-supervised learning with Gaussian processes. UAI 2015: 228-237 - [e6]Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, Roman Garnett:
Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada. 2015 [contents] - [i18]Zhenwen Dai, James Hensman, Neil D. Lawrence:
Spike and Slab Gaussian Process Latent Variable Models. CoRR abs/1505.02434 (2015) - [i17]Andreas C. Damianou, Neil D. Lawrence:
Semi-described and semi-supervised learning with Gaussian processes. CoRR abs/1509.01168 (2015) - 2014
- [j30]Ciira Wa Maina, Antti Honkela, Filomena Matarese, Korbinian Grote, Hendrik G. Stunnenberg, George Reid, Neil D. Lawrence, Magnus Rattray:
Inference of RNA Polymerase II Transcription Dynamics from Chromatin Immunoprecipitation Time Course Data. PLoS Comput. Biol. 10(5) (2014) - [c57]Trevor Cohn, Daniel Preotiuc-Pietro, Neil D. Lawrence:
Gaussian Processes for Natural Language Processing. ACL (Tutorial Abstracts) 2014: 1-3 - [c56]Ricardo Andrade Pacheco, James Hensman, Max Zwiessele, Neil D. Lawrence:
Hybrid Discriminative-Generative Approach with Gaussian Processes. AISTATS 2014: 47-56 - [c55]James Hensman, Max Zwiessele, Neil D. Lawrence:
Tilted Variational Bayes. AISTATS 2014: 356-364 - [c54]Alessandra Tosi, Søren Hauberg, Alfredo Vellido, Neil D. Lawrence:
Metrics for Probabilistic Geometries. UAI 2014: 800-808 - [e5]Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, Kilian Q. Weinberger:
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. 2014 [contents] - [i16]James Hensman, Magnus Rattray, Neil D. Lawrence:
Fast variational inference for nonparametric clustering of structured time-series. CoRR abs/1401.1605 (2014) - [i15]Andreas C. Damianou, Michalis K. Titsias, Neil D. Lawrence:
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models. CoRR abs/1409.2287 (2014) - [i14]Zhenwen Dai, Andreas C. Damianou, James Hensman, Neil D. Lawrence:
Gaussian Process Models with Parallelization and GPU acceleration. CoRR abs/1410.4984 (2014) - [i13]Alessandra Tosi, Søren Hauberg, Alfredo Vellido, Neil D. Lawrence:
Metrics for Probabilistic Geometries. CoRR abs/1411.7432 (2014) - 2013
- [j29]Nicoló Fusi, Christoph Lippert, Karsten M. Borgwardt, Neil D. Lawrence, Oliver Stegle:
Detecting regulatory gene-environment interactions with unmeasured environmental factors. Bioinform. 29(11): 1382-1389 (2013) - [j28]James Hensman, Neil D. Lawrence, Magnus Rattray:
Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinform. 14: 252 (2013) - [j27]Barbara Hammer, Daniel A. Keim, Neil D. Lawrence, Guy Lebanon:
Preface: Intelligent interactive data visualization. Data Min. Knowl. Discov. 27(1): 1-3 (2013) - [j26]Mauricio A. Álvarez, David Luengo, Neil D. Lawrence:
Linear Latent Force Models Using Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell. 35(11): 2693-2705 (2013) - [c53]Andreas C. Damianou, Neil D. Lawrence:
Deep Gaussian Processes. AISTATS 2013: 207-215 - [c52]Alfredo A. Kalaitzis, John D. Lafferty, Neil D. Lawrence, Shuheng Zhou:
The Bigraphical Lasso. ICML (3) 2013: 1229-1237 - [c51]James Hensman, Nicoló Fusi, Neil D. Lawrence:
Gaussian Processes for Big Data. UAI 2013 - [i12]Neil D. Lawrence, Christopher M. Bishop, Michael I. Jordan:
Mixture Representations for Inference and Learning in Boltzmann Machines. CoRR abs/1301.7393 (2013) - [i11]James Hensman, Nicoló Fusi, Neil D. Lawrence:
Gaussian Processes for Big Data. CoRR abs/1309.6835 (2013) - 2012
- [j25]Michalis K. Titsias, Antti Honkela, Neil D. Lawrence, Magnus Rattray:
Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison. BMC Syst. Biol. 6: 53 (2012) - [j24]Mauricio A. Álvarez, Lorenzo Rosasco, Neil D. Lawrence:
Kernels for Vector-Valued Functions: A Review. Found. Trends Mach. Learn. 4(3): 195-266 (2012) - [j23]Neil D. Lawrence:
A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction: Insights and New Models. J. Mach. Learn. Res. 13: 1609-1638 (2012) - [j22]Ramin Zabih, Sing Bing Kang, Neil D. Lawrence, Jiri Matas, Max Welling:
Editor's Note. IEEE Trans. Pattern Anal. Mach. Intell. 34(2): 209-210 (2012)