


Остановите войну!
for scientists:
Nada Lavrac
Nada Lavrač
Person information

- unicode name: Nada Lavrač
- affiliation: University of Nova Gorica, Slovenia
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j96]Tadej Skvorc
, Nada Lavrac, Marko Robnik-Sikonja
:
NeSyChair: Automatic Conference Scheduling Combining Neuro-Symbolic Representations and Constrained Clustering. IEEE Access 10: 10880-10897 (2022) - [j95]Blaz Skrlj
, Jan Kralj
, Janez Konc
, Marko Robnik-Sikonja
, Nada Lavrac
:
Deep node ranking for neuro-symbolic structural node embedding and classification. Int. J. Intell. Syst. 37(1): 914-943 (2022) - [j94]Blaz Skrlj, Saso Dzeroski
, Nada Lavrac, Matej Petkovic
:
ReliefE: feature ranking in high-dimensional spaces via manifold embeddings. Mach. Learn. 111(1): 273-317 (2022) - 2021
- [j93]Blaz Skrlj, Nika Erzen, Nada Lavrac
, Tanja Kunej
, Janez Konc
:
CaNDis: a web server for investigation of causal relationships between diseases, drugs and drug targets. Bioinform. 37(6): 885-887 (2021) - [j92]Sebastian Meznar, Nada Lavrac, Blaz Skrlj:
Transfer Learning for Node Regression Applied to Spreading Prediction. Complex Syst. 30(4): 457-481 (2021) - [j91]Blaz Skrlj, Matej Martinc, Jan Kralj, Nada Lavrac
, Senja Pollak
:
tax2vec: Constructing Interpretable Features from Taxonomies for Short Text Classification. Comput. Speech Lang. 65: 101104 (2021) - [j90]Blaz Skrlj, Enja Kokalj, Nada Lavrac
:
PubMed-Scale Chemical Concept Embeddings Reconstruct Physical Protein Interaction Networks. Frontiers Res. Metrics Anal. 6: 644614 (2021) - [j89]Blaz Skrlj
, Matej Martinc, Nada Lavrac
, Senja Pollak:
autoBOT: evolving neuro-symbolic representations for explainable low resource text classification. Mach. Learn. 110(5): 989-1028 (2021) - [c129]Anita Valmarska, Nada Lavrac, Marko Robnik-Sikonja:
Stratification of Parkinson's Disease Patients via Multi-view Clustering. AIME 2021: 229-239 - [c128]Blaz Skrlj
, Marko Jukic, Nika Erzen, Senja Pollak
, Nada Lavrac:
Prioritization of COVID-19-Related Literature via Unsupervised Keyphrase Extraction and Document Representation Learning. DS 2021: 204-217 - [c127]Enja Kokalj, Blaz Skrlj, Nada Lavrac, Senja Pollak, Marko Robnik-Sikonja:
BERT meets Shapley: Extending SHAP Explanations to Transformer-based Classifiers. EACL (Hackashop) 2021: 16-21 - [c126]Senja Pollak, Marko Robnik-Sikonja, Matthew Purver, Michele Boggia, Ravi Shekhar, Marko Pranjic, Salla Salmela, Ivar Krustok, Tarmo Paju, Carl-Gustav Linden, Leo Leppänen, Elaine Zosa, Matej Ulcar, Linda Freienthal, Silver Traat, Luis Adrián Cabrera-Diego, Matej Martinc, Nada Lavrac, Blaz Skrlj, Martin Znidarsic, Andraz Pelicon, Boshko Koloski, Vid Podpecan, Janez Kranjc, Shane Sheehan, Emanuela Boros, Jose G. Moreno, Antoine Doucet, Hannu Toivonen:
EMBEDDIA Tools, Datasets and Challenges: Resources and Hackathon Contributions. EACL (Hackashop) 2021: 99-109 - [c125]Senja Pollak, Vid Podpecan, Janez Kranjc, Borut Lesjak, Nada Lavrac:
Scientific Question Generation: Pattern-Based and Graph-Based RoboCHAIR Methods. ICCC 2021: 140-148 - [i16]Blaz Skrlj, Saso Dzeroski, Nada Lavrac, Matej Petkovic:
ReliefE: Feature Ranking in High-dimensional Spaces via Manifold Embeddings. CoRR abs/2101.09577 (2021) - [i15]Sebastian Meznar, Nada Lavrac, Blaz Skrlj:
Transfer Learning for Node Regression Applied to Spreading Prediction. CoRR abs/2104.00088 (2021) - [i14]Timen Stepisnik Perdih, Nada Lavrac, Blaz Skrlj:
Semantic Reasoning from Model-Agnostic Explanations. CoRR abs/2106.15433 (2021) - [i13]Blaz Skrlj, Marko Jukic, Nika Erzen, Senja Pollak, Nada Lavrac:
Prioritization of COVID-19-related literature via unsupervised keyphrase extraction and document representation learning. CoRR abs/2110.08874 (2021) - [i12]Sebastian Meznar, Matej Bevec, Nada Lavrac, Blaz Skrlj:
Link Analysis meets Ontologies: Are Embeddings the Answer? CoRR abs/2111.11710 (2021) - 2020
- [j88]Sebastian Meznar
, Nada Lavrac
, Blaz Skrlj
:
SNoRe: Scalable Unsupervised Learning of Symbolic Node Representations. IEEE Access 8: 212568-212588 (2020) - [j87]Dominik Kozjek
, Rok Vrabic
, Borut Rihtarsic, Nada Lavrac
, Peter Butala:
Advancing manufacturing systems with big-data analytics: A conceptual framework. Int. J. Comput. Integr. Manuf. 33(2): 169-188 (2020) - [j86]Nada Lavrac
, Blaz Skrlj
, Marko Robnik-Sikonja:
Propositionalization and embeddings: two sides of the same coin. Mach. Learn. 109(7): 1465-1507 (2020) - [j85]Blaz Skrlj
, Jan Kralj, Nada Lavrac
:
Embedding-based Silhouette community detection. Mach. Learn. 109(11): 2161-2193 (2020) - [j84]Nada Lavrac
, Matej Martinc, Senja Pollak, Marusa Pompe-Novak, Bojan Cestnik
:
Bisociative Literature-Based Discovery: Lessons Learned and New Word Embedding Approach. New Gener. Comput. 38(4): 773-800 (2020) - [c124]Anita Valmarska, Dragana Miljkovic, Nada Lavrac, Marko Robnik-Sikonja:
Multi-view Clustering with mvReliefF for Parkinson's Disease Patients Subgroup Detection. AIME 2020: 287-298 - [c123]Sebastian Meznar
, Nada Lavrac, Blaz Skrlj:
Prediction of the Effects of Epidemic Spreading with Graph Neural Networks. COMPLEX NETWORKS (1) 2020: 420-431 - [c122]Matej Martinc, Blaz Skrlj, Sergej Pirkmajer, Nada Lavrac, Bojan Cestnik, Martin Marzidovsek, Senja Pollak:
COVID-19 Therapy Target Discovery with Context-Aware Literature Mining. DS 2020: 109-123 - [c121]Blaz Skrlj, Saso Dzeroski, Nada Lavrac, Matej Petkovic
:
Feature Importance Estimation with Self-Attention Networks. ECAI 2020: 1491-1498 - [c120]Nada Lavrac, Matej Martinc, Senja Pollak, Bojan Cestnik:
Bisociative Literature-Based Discovery: Lessons Learned and New Prospects. ICCC 2020: 139-145 - [i11]Blaz Skrlj, Saso Dzeroski, Nada Lavrac, Matej Petkovic:
Feature Importance Estimation with Self-Attention Networks. CoRR abs/2002.04464 (2020) - [i10]Nada Lavrac, Blaz Skrlj, Marko Robnik-Sikonja:
Propositionalization and Embeddings: Two Sides of the Same Coin. CoRR abs/2006.04410 (2020) - [i9]Matej Martinc, Blaz Skrlj, Sergej Pirkmajer, Nada Lavrac, Bojan Cestnik, Martin Marzidovsek, Senja Pollak:
COVID-19 therapy target discovery with context-aware literature mining. CoRR abs/2007.15681 (2020) - [i8]Sebastian Meznar, Nada Lavrac, Blaz Skrlj:
SNoRe: Scalable Unsupervised Learning of Symbolic Node Representations. CoRR abs/2009.04535 (2020)
2010 – 2019
- 2019
- [j83]Blaz Skrlj
, Jan Kralj, Nada Lavrac:
Py3plex toolkit for visualization and analysis of multilayer networks. Appl. Netw. Sci. 4(1): 94:1-94:24 (2019) - [j82]Vid Podpecan, Ziva Ramsak, Kristina Gruden, Hannu Toivonen
, Nada Lavrac:
Interactive exploration of heterogeneous biological networks with Biomine Explorer. Bioinform. 35(24): 5385-5388 (2019) - [j81]Ping Xiao
, Hannu Toivonen
, Oskar Gross, Amílcar Cardoso
, João Correia
, Penousal Machado
, Pedro Martins
, Hugo Gonçalo Oliveira
, Rahul Sharma
, Alexandre Miguel Pinto, Alberto Díaz, Virginia Francisco, Pablo Gervás, Raquel Hervás
, Carlos León, Jamie Forth, Matthew Purver
, Geraint A. Wiggins
, Dragana Miljkovic, Vid Podpecan, Senja Pollak
, Jan Kralj, Martin Znidarsic, Marko Bohanec, Nada Lavrac, Tanja Urbancic, Frank van der Velde, Stuart Adam Battersby:
Conceptual Representations for Computational Concept Creation. ACM Comput. Surv. 52(1): 9:1-9:33 (2019) - [j80]Pedro Martins
, Hugo Gonçalo Oliveira
, João Gonçalves, António Cruz
, Amílcar Cardoso
, Martin Znidarsic, Nada Lavrac, Simo Linkola
, Hannu Toivonen
, Raquel Hervás
, Gonzalo Méndez
, Pablo Gervás:
Computational creativity infrastructure for online software composition: A conceptual blending use case. IBM J. Res. Dev. 63(1): 9:1-9:17 (2019) - [j79]Blaz Skrlj, Jan Kralj, Nada Lavrac:
CBSSD: community-based semantic subgroup discovery. J. Intell. Inf. Syst. 53(2): 265-304 (2019) - [j78]Jan Kralj, Marko Robnik-Sikonja, Nada Lavrac:
NetSDM: Semantic Data Mining with Network Analysis. J. Mach. Learn. Res. 20: 32:1-32:50 (2019) - [j77]Dragan Gamberger
, Tjasa Stare, Dragana Miljkovic, Kristina Gruden, Nada Lavrac:
Discovery of Relevant Response in Infected Potato Plants from Time Series of Gene Expression Data. Mach. Learn. Knowl. Extr. 1(1): 400-413 (2019) - [j76]Blaz Skrlj
, Jan Kralj, Nada Lavrac, Senja Pollak
:
Towards Robust Text Classification with Semantics-Aware Recurrent Neural Architecture. Mach. Learn. Knowl. Extr. 1(2): 575-589 (2019) - [c119]Anita Valmarska, Dragana Miljkovic, Marko Robnik-Sikonja, Nada Lavrac:
Connection Between the Parkinson's Disease Subtypes and Patients' Symptoms Progression. AIME 2019: 263-268 - [c118]Blaz Skrlj, Nada Lavrac, Jan Kralj:
Symbolic Graph Embedding Using Frequent Pattern Mining. DS 2019: 261-275 - [p14]Nada Lavrac, Matjaz Jursic, Borut Sluban, Matic Perovsek, Senja Pollak, Tanja Urbancic, Bojan Cestnik:
Bisociative Knowledge Discovery for Cross-domain Literature Mining. Computational Creativity 2019: 121-139 - [i7]Blaz Skrlj, Matej Martinc, Jan Kralj, Nada Lavrac, Senja Pollak:
tax2vec: Constructing Interpretable Features from Taxonomies for Short Text Classification. CoRR abs/1902.00438 (2019) - [i6]Blaz Skrlj, Jan Kralj, Janez Konc, Marko Robnik-Sikonja, Nada Lavrac:
Deep Node Ranking: an Algorithm for Structural Network Embedding and End-to-End Classification. CoRR abs/1902.03964 (2019) - [i5]Blaz Skrlj, Jan Kralj, Nada Lavrac:
Embedding-based Silhouette Community Detection. CoRR abs/1908.02556 (2019) - [i4]Blaz Skrlj, Jan Kralj, Nada Lavrac:
Symbolic Graph Embedding using Frequent Pattern Mining. CoRR abs/1910.13314 (2019) - 2018
- [j75]Anita Valmarska, Dragana Miljkovic, Spiros Konitsiotis, Dimitris Gatsios
, Nada Lavrac, Marko Robnik-Sikonja:
Symptoms and medications change patterns for Parkinson's disease patients stratification. Artif. Intell. Medicine 91: 82-95 (2018) - [j74]Dragana Miljkovic, Nada Lavrac, Marko Bohanec, Biljana Mileva-Boshkoska:
Discovering dependencies between domains of redox potential and plant defence through triplet extraction and copulas. Int. J. Intell. Eng. Informatics 6(1/2): 61-77 (2018) - [j73]Matej Martinc, Martin Znidarsic, Nada Lavrac, Senja Pollak:
Towards Creative Software Blending: Computational Infrastructure and Use Cases. Informatica (Slovenia) 42(1) (2018) - [j72]Senja Pollak, Geraint A. Wiggins, Martin Znidarsic, Nada Lavrac:
Computational Creativity in Slovenia. Informatica (Slovenia) 42(1) (2018) - [j71]Jan Kralj
, Marko Robnik-Sikonja, Nada Lavrac:
HINMINE: heterogeneous information network mining with information retrieval heuristics. J. Intell. Inf. Syst. 50(1): 29-61 (2018) - [j70]Matej Mihelcic
, Saso Dzeroski
, Nada Lavrac, Tomislav Smuc
:
Redescription mining augmented with random forest of multi-target predictive clustering trees. J. Intell. Inf. Syst. 50(1): 63-96 (2018) - [j69]Anita Valmarska, Dragana Miljkovic, Nada Lavrac, Marko Robnik-Sikonja:
Analysis of medications change in Parkinson's disease progression data. J. Intell. Inf. Syst. 51(2): 301-337 (2018) - [j68]Anita Valmarska, Dragana Miljkovic, Nada Lavrac, Marko Robnik-Sikonja:
Correction to: Analysis of medications change in Parkinson's disease progression data. J. Intell. Inf. Syst. 51(2): 339-340 (2018) - [c117]Blaz Skrlj, Jan Kralj, Nada Lavrac:
Py3plex: A Library for Scalable Multilayer Network Analysis and Visualization. COMPLEX NETWORKS (1) 2018: 757-768 - [c116]Anita Valmarska, Dragana Miljkovic, Marko Robnik-Sikonja, Nada Lavrac:
Visualization and Analysis of Parkinson's Disease Status and Therapy Patterns. DS 2018: 466-479 - [c115]Geraint A. Wiggins, Nada Lavrac, Vid Podpecan, Senja Pollak:
Conceptualising Computational Creativity: Towards automated historiography of a research field. ICCC 2018: 288-295 - [c114]Blaz Skrlj, Jan Kralj, Nada Lavrac:
Targeted End-to-End Knowledge Graph Decomposition. ILP 2018: 157-171 - 2017
- [j67]Matej Mihelcic
, Saso Dzeroski
, Nada Lavrac, Tomislav Smuc
:
A framework for redescription set construction. Expert Syst. Appl. 68: 196-215 (2017) - [j66]Anita Valmarska, Nada Lavrac, Johannes Fürnkranz
, Marko Robnik-Sikonja:
Refinement and selection heuristics in subgroup discovery and classification rule learning. Expert Syst. Appl. 81: 147-162 (2017) - [j65]Donatella Gubiani
, Elsa Fabbretti, Bojan Cestnik, Nada Lavrac, Tanja Urbancic:
Outlier based literature exploration for cross-domain linking of Alzheimer's disease and gut microbiota. Expert Syst. Appl. 85: 386-396 (2017) - [j64]Janez Kranjc
, Roman Orac, Vid Podpecan, Nada Lavrac, Marko Robnik-Sikonja:
ClowdFlows: Online workflows for distributed big data mining. Future Gener. Comput. Syst. 68: 38-58 (2017) - [c113]Anita Valmarska, Dragana Miljkovic, Spiros Konitsiotis, Dimitris Gatsios
, Nada Lavrac, Marko Robnik-Sikonja:
Combining Multitask Learning and Short Time Series Analysis in Parkinson's Disease Patients Stratification. AIME 2017: 116-125 - [c112]Blaz Skrlj, Jan Kralj, Anze Vavpetic, Nada Lavrac:
Community-Based Semantic Subgroup Discovery. NFMCP@PKDD/ECML 2017: 182-196 - [r2]Petra Kralj Novak, Nada Lavrac, Geoffrey I. Webb:
Supervised Descriptive Rule Induction. Encyclopedia of Machine Learning and Data Mining 2017: 1210-1213 - [i3]Matej Mihelcic, Goran Simic, Mirjana Babic Leko, Nada Lavrac, Saso Dzeroski, Tomislav Smuc:
Using Redescription Mining to Relate Clinical and Biological Characteristics of Cognitively Impaired and Alzheimer's Disease Patients. CoRR abs/1702.06831 (2017) - 2016
- [j63]Dragan Gamberger, Bernard Zenko, Alexis Mitelpunkt, Netta Shachar, Nada Lavrac:
Clusters of male and female Alzheimer's disease patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Brain Informatics 3(3): 169-179 (2016) - [j62]Prem Raj Adhikari, Anze Vavpetic, Jan Kralj, Nada Lavrac, Jaakko Hollmén:
Explaining mixture models through semantic pattern mining and banded matrix visualization. Mach. Learn. 105(1): 3-39 (2016) - [j61]Matic Perovsek, Janez Kranjc, Tomaz Erjavec
, Bojan Cestnik, Nada Lavrac:
TextFlows: A visual programming platform for text mining and natural language processing. Sci. Comput. Program. 121: 128-152 (2016) - [c111]Dragana Miljkovic, Nada Lavrac, Marko Bohanec, Biljana Mileva-Boshkoska:
Detection of dependencies between literature domains through relation extraction and copulas. CoDIT 2016: 302-307 - [c110]Senja Pollak, Biljana Mileva-Boshkoska, Dragana Miljkovic, Geraint A. Wiggins, Nada Lavrac:
Computational Creativity Conceptualisation Grounded on ICCC Papers. ICCC 2016: 123-130 - [c109]Martin Znidarsic, Amílcar Cardoso, Pablo Gervás, Pedro Martins, Raquel Hervás, Ana Oliveira Alves, Hugo Gonçalo Oliveira, Ping Xiao, Simo Linkola, Hannu Toivonen, Janez Kranjc, Nada Lavrac:
Computational Creativity Infrastructure for Online Software Composition: A Conceptual Blending Use Case. ICCC 2016: 371-379 - [c108]Jasmina Smailovic, Miha Grcar, Nada Lavrac, Martin Znidarsic:
Dynamic Parameter Adaptation of SVM Based Active Learning Methodology. AL@iKNOW 2016: 17-24 - [c107]Jan Kralj, Anze Vavpetic, Michel Dumontier
, Nada Lavrac:
Network Ranking Assisted Semantic Data Mining. IWBBIO 2016: 752-764 - [c106]Anita Valmarska, Dragana Miljkovic, Marko Robnik-Sikonja, Nada Lavrac:
Multi-view Approach to Parkinson's Disease Quality of Life Data Analysis. NFMCP@PKDD/ECML 2016: 163-178 - [c105]Tadej Skvorc, Nada Lavrac, Marko Robnik-Sikonja:
Co-Bidding Graphs for Constrained Paper Clustering. SLATE 2016: 1:1-1:13 - [p13]Matic Perovsek, Matjaz Jursic, Bojan Cestnik, Nada Lavrac:
Empowering Bridging Term Discovery for Cross-Domain Literature Mining in the TextFlows Platform. Machine Learning for Health Informatics 2016: 59-98 - [p12]Dragana Miljkovic, Darko Aleksovski, Vid Podpecan, Nada Lavrac, Bernd Malle, Andreas Holzinger
:
Machine Learning and Data Mining Methods for Managing Parkinson's Disease. Machine Learning for Health Informatics 2016: 209-220 - [i2]Matej Mihelcic, Saso Dzeroski, Nada Lavrac, Tomislav Smuc:
A framework for redescription set construction. CoRR abs/1606.03935 (2016) - 2015
- [j60]Matic Perovsek, Anze Vavpetic, Janez Kranjc, Bojan Cestnik, Nada Lavrac:
Wordification: Propositionalization by unfolding relational data into bags of words. Expert Syst. Appl. 42(17-18): 6442-6456 (2015) - [j59]Borut Sluban, Nada Lavrac:
Relating ensemble diversity and performance: A study in class noise detection. Neurocomputing 160: 120-131 (2015) - [j58]Janez Kranjc, Jasmina Smailovic, Vid Podpecan, Miha Grcar, Martin Znidarsic, Nada Lavrac:
Active learning for sentiment analysis on data streams: Methodology and workflow implementation in the ClowdFlows platform. Inf. Process. Manag. 51(2): 187-203 (2015) - [c104]Dragan Gamberger, Bernard Zenko, Alexis Mitelpunkt, Nada Lavrac:
Identification of Gender Specific Biomarkers for Alzheimer's Disease. BIH 2015: 57-66 - [c103]Pedro Martins, Tanja Urbancic, Senja Pollak, Nada Lavrac, Amílcar Cardoso:
The Good, the Bad, and the AHA! Blends. ICCC 2015: 166-173 - [c102]Dragan Gamberger, Bernard Zenko, Alexis Mitelpunkt, Nada Lavrac:
Multilayer Clustering: Biomarker Driven Segmentation of Alzheimer's Disease Patient Population. IWBBIO (1) 2015: 134-145 - [c101]Nada Lavrac, Anze Vavpetic:
Relational and Semantic Data Mining - - Invited Talk -. LPNMR 2015: 20-31 - [c100]Jan Kralj, Anita Valmarska, Marko Robnik-Sikonja, Nada Lavrac:
Mining Text Enriched Heterogeneous Citation Networks. PAKDD (1) 2015: 672-683 - [c99]Matej Mihelcic
, Saso Dzeroski
, Nada Lavrac, Tomislav Smuc:
Redescription Mining with Multi-target Predictive Clustering Trees. NFMCP 2015: 125-143 - [c98]Jan Kralj, Marko Robnik-Sikonja, Nada Lavrac:
Heterogeneous Network Decomposition and Weighting with Text Mining Heuristics. NFMCP 2015: 194-208 - [c97]Senja Pollak
, Borut Lesjak, Janez Kranjc, Vid Podpecan, Martin nidaric, Nada Lavrac:
RoboCHAIR: Creative Assistant for Question Generation and Ranking. SSCI 2015: 1468-1475 - 2014
- [j57]Dany Morisset
, Petra Kralj Novak, Darko Zupanic, Kristina Gruden
, Nada Lavrac, Jana Zel:
GMOseek: a user friendly tool for optimized GMO testing. BMC Bioinform. 15: 258 (2014) - [j56]Borut Sluban, Dragan Gamberger, Nada Lavrac:
Ensemble-based noise detection: noise ranking and visual performance evaluation. Data Min. Knowl. Discov. 28(2): 265-303 (2014) - [j55]Dragana Miljkovic, Matjaz Depolli, Tjasa Stare, Igor Mozetic
, Marko Petek, Kristina Gruden
, Nada Lavrac:
Plant defence model revisions through iterative minimisation of constraint violations. Int. J. Comput. Biol. Drug Des. 7(1): 61-79 (2014) - [j54]Jasmina Smailovic, Miha Grcar, Nada Lavrac, Martin Znidarsic:
Stream-based active learning for sentiment analysis in the financial domain. Inf. Sci. 285: 181-203 (2014) - [j53]Anze Vavpetic, Vid Podpecan, Nada Lavrac:
Semantic subgroup explanations. J. Intell. Inf. Syst. 42(2): 233-254 (2014) - [c96]Prem Raj Adhikari, Anze Vavpetic, Jan Kralj, Nada Lavrac, Jaakko Hollmén:
Explaining Mixture Models through Semantic Pattern Mining and Banded Matrix Visualization. Discovery Science 2014: 1-12 - [c95]Dragan Gamberger, Matej Mihelcic, Nada Lavrac:
Multilayer Clustering: A Discovery Experiment on Country Level Trading Data. Discovery Science 2014: 87-98 - [c94]Maria Teresa Llano, Rose Hepworth, Simon Colton, Jeremy Gow, John William Charnley, Nada Lavrac, Martin Znidarsic, Matic Perovsek, Mark Granroth-Wilding, Stephen Clark:
Baseline Methods for Automated Fictional Ideation. ICCC 2014: 211-219 - [c93]Nada Lavrac, Matic Perovsek, Anze Vavpetic:
Propositionalization Online. ECML/PKDD (3) 2014: 456-459 - [e10]Simon Colton, Dan Ventura, Nada Lavrac, Michael Cook:
Proceedings of the Fifth International Conference on Computational Creativity, ICCC 2014, Ljubljana, Slovenia, June 10-13, 2014. computationalcreativity.net 2014, ISBN 978-961-264-055-2 [contents] - 2013
- [j52]Laura Langohr, Vid Podpecan, Marko Petek, Igor Mozetic
, Kristina Gruden
, Nada Lavrac, Hannu Toivonen
:
Contrasting Subgroup Discovery. Comput. J. 56(3): 289-303 (2013) - [j51]Anze Vavpetic, Nada Lavrac:
Semantic Subgroup Discovery Systems and Workflows in the SDM-Toolkit. Comput. J. 56(3): 304-320 (2013) - [j50]Miha Grcar, Nejc Trdin, Nada Lavrac:
A Methodology for Mining Document-Enriched Heterogeneous Information Networks. Comput. J. 56(3): 321-335 (2013) - [j49]Nada Lavrac, Petra Kralj Novak:
Relational and Semantic Data Mining for Biomedical Research. Informatica (Slovenia) 37(1): 35-39 (2013) - [c92]Vid Podpecan, Dragana Miljkovic, Marko Petek, Tjasa Stare, Kristina Gruden
, Igor Mozetic
, Nada Lavrac:
Integrating semantic transcriptomic data analysis and knowledge extraction from biological literature. BIBM 2013: 477-480 - [c91]Janez Kranjc, Vid Podpecan, Nada Lavrac:
Real-time data analysis in ClowdFlows. IEEE BigData 2013: 15-22 - [c90]Matic Perovsek, Anze Vavpetic, Bojan Cestnik, Nada Lavrac:
A Wordification Approach to Relational Data Mining. Discovery Science 2013: 141-154 - [c89]Anze Vavpetic, Petra Kralj Novak, Miha Grcar, Igor Mozetic
, Nada Lavrac:
Semantic Data Mining of Financial News Articles. Discovery Science 2013: 294-307 - [c88]Matic Perovsek, Bojan Cestnik, Tanja Urbancic, Simon Colton, Nada Lavrac:
Towards Narrative Ideation via Cross-Context Link Discovery Using Banded Matrices. IDA 2013: 333-344 - [c87]Dragana Miljkovic, Vid Podpecan, Tjasa Stare, Igor Mozetic, Kristina Gruden, Nada Lavrac:
Incremental revision of biological networks from texts. IWBBIO 2013: 1-9 - [c86]Borut Sluban, Nada Lavrac:
ViperCharts: Visual Performance Evaluation Platform. ECML/PKDD (3) 2013: 650-653 - [c85]Jasmina Smailovic, Miha Grcar, Nada Lavrac, Martin Znidarsic:
Predictive Sentiment Analysis of Tweets: A Stock Market Application. CHI-KDD 2013: 77-88 - [c84]Matjaz Jursic, Bojan Cestnik, Tanja Urbancic, Nada Lavrac:
HCI Empowered Literature Mining for Cross-Domain Knowledge Discovery. CHI-KDD 2013: 124-135 - 2012
- [b3]Johannes Fürnkranz
, Dragan Gamberger, Nada Lavrac:
Foundations of Rule Learning. Cognitive Technologies, Springer 2012, ISBN 978-3-540-75196-0, pp. 1-298