


Остановите войну!
for scientists:


default search action
Taghi M. Khoshgoftaar
Person information

- affiliation: Florida Atlantic University, Boca Raton, Florida, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j204]Justin M. Johnson
, Robert K. L. Kennedy, Taghi M. Khoshgoftaar:
Learning from Highly Imbalanced Big Data with Label Noise. Int. J. Artif. Intell. Tools 32(5): 2360003:1-2360003:20 (2023) - [j203]Zahra Salekshahrezaee, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
The effect of feature extraction and data sampling on credit card fraud detection. J. Big Data 10(1): 6 (2023) - [j202]Clifford Kemp, Chad Calvert, Taghi M. Khoshgoftaar, Joffrey L. Leevy:
An approach to application-layer DoS detection. J. Big Data 10(1): 22 (2023) - [j201]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
Evaluating classifier performance with highly imbalanced Big Data. J. Big Data 10(1): 42 (2023) - [j200]Joffrey L. Leevy, Justin M. Johnson, John T. Hancock, Taghi M. Khoshgoftaar:
Threshold optimization and random undersampling for imbalanced credit card data. J. Big Data 10(1): 58 (2023) - [j199]Safak Kayikci
, Taghi M. Khoshgoftaar:
Breast cancer prediction using gated attentive multimodal deep learning. J. Big Data 10(1): 62 (2023) - [j198]Robert K. L. Kennedy, Zahra Salekshahrezaee, Flavio Villanustre, Taghi M. Khoshgoftaar:
Iterative cleaning and learning of big highly-imbalanced fraud data using unsupervised learning. J. Big Data 10(1): 106 (2023) - [j197]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar:
Comparative analysis of binary and one-class classification techniques for credit card fraud data. J. Big Data 10(1): 118 (2023) - [j196]John T. Hancock, Richard A. Bauder, Huanjing Wang, Taghi M. Khoshgoftaar:
Explainable machine learning models for Medicare fraud detection. J. Big Data 10(1): 154 (2023) - [j195]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Azadeh Abdollah Zadeh:
Investigating the effectiveness of one-class and binary classification for fraud detection. J. Big Data 10(1): 157 (2023) - [j194]Justin M. Johnson
, Taghi M. Khoshgoftaar:
Data-Centric AI for Healthcare Fraud Detection. SN Comput. Sci. 4(4): 389 (2023) - [j193]John T. Hancock
, Taghi M. Khoshgoftaar:
Exploring Maximum Tree Depth and Random Undersampling in Ensemble Trees to Optimize the Classification of Imbalanced Big Data. SN Comput. Sci. 4(5): 462 (2023) - [c396]Huanjing Wang, Qianxin Liang, John T. Hancock, Taghi M. Khoshgoftaar:
Enhancing Credit Card Fraud Detection Through a Novel Ensemble Feature Selection Technique. IRI 2023: 121-126 - [c395]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar:
Assessing One-Class and Binary Classification Approaches for Identifying Medicare Fraud. IRI 2023: 267-272 - [c394]Robert K. L. Kennedy, Zahra Salekshahrezaee, Taghi M. Khoshgoftaar:
Unsupervised Anomaly Detection of Class Imbalanced Cognition Data Using an Iterative Cleaning Method. IRI 2023: 303-308 - [c393]Huanjing Wang, John T. Hancock, Taghi M. Khoshgoftaar:
Improving Medicare Fraud Detection through Big Data Size Reduction Techniques. SOSE 2023: 208-217 - 2022
- [j192]Joffrey L. Leevy
, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
IoT information theft prediction using ensemble feature selection. J. Big Data 9(1): 6 (2022) - [j191]Rick Sauber-Cole, Taghi M. Khoshgoftaar:
The use of generative adversarial networks to alleviate class imbalance in tabular data: a survey. J. Big Data 9(1): 98 (2022) - [j190]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
A new feature popularity framework for detecting cyberattacks using popular features. J. Big Data 9(1): 119 (2022) - [j189]Justin M. Johnson
, Taghi M. Khoshgoftaar:
A Survey on Classifying Big Data with Label Noise. ACM J. Data Inf. Qual. 14(4): 23:1-23:43 (2022) - [j188]Justin M. Johnson
, Taghi M. Khoshgoftaar:
Encoding High-Dimensional Procedure Codes for Healthcare Fraud Detection. SN Comput. Sci. 3(5): 362 (2022) - [j187]John T. Hancock
, Taghi M. Khoshgoftaar:
Hyperparameter Tuning for Medicare Fraud Detection in Big Data. SN Comput. Sci. 3(6): 440 (2022) - [c392]Robert K. L. Kennedy, Zahra Salekshahrezaee, Taghi M. Khoshgoftaar:
A Novel Approach for Unsupervised Learning of Highly-Imbalanced Data. CogMI 2022: 52-58 - [c391]John T. Hancock, Justin M. Johnson, Taghi M. Khoshgoftaar:
A Comparative Approach to Threshold Optimization for Classifying Imbalanced Data. CIC 2022: 135-142 - [c390]Erika Cardenas, Connor Shorten, Taghi M. Khoshgoftaar, Borivoje Furht:
A Comparison of House Price Classification with Structured and Unstructured Text Data. FLAIRS 2022 - [c389]Connor Shorten, Taghi M. Khoshgoftaar:
An Exploration of Consistency Learning with Data Augmentation. FLAIRS 2022 - [c388]Connor Shorten, Taghi M. Khoshgoftaar, Javad Hashemi, Safiya George Dalmida, David Newman, Debarshi Datta, Laurie Martinez, Candice Sareli, Paula Eckard:
Predicting the Severity of COVID-19 Respiratory Illness with Deep Learning. FLAIRS 2022 - [c387]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
Informative Evaluation Metrics for Highly Imbalanced Big Data Classification. ICMLA 2022: 1419-1426 - [c386]Justin M. Johnson, Taghi M. Khoshgoftaar:
Cost-Sensitive Ensemble Learning for Highly Imbalanced Classification. ICMLA 2022: 1427-1434 - [c385]Joffrey L. Leevy, Taghi M. Khoshgoftaar, John T. Hancock:
Evaluating Performance Metrics for Credit Card Fraud Classification. ICTAI 2022: 1336-1341 - [c384]Rick Sauber-Cole, Taghi M. Khoshgoftaar, Justin M. Johnson:
GANs for Class-Imbalanced Data: A Meta-Analysis of GitHub Projects. ICTAI 2022: 1419-1424 - [c383]Connor Shorten, Erika Cardenas, Taghi M. Khoshgoftaar, Javad Hashemi, Safiya George Dalmida, David Newman, Debarshi Datta, Laurie Martinez, Candice Sareli, Paula Eckard:
Exploring Language-Interfaced Fine-Tuning for COVID-19 Patient Survival Classification. ICTAI 2022: 1449-1454 - [c382]Zahra Salekshahrezaee, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
A Class-Imbalanced Study with Feature Extraction via PCA and Convolutional Autoencoder. IRI 2022: 63-68 - [c381]Justin M. Johnson, Taghi M. Khoshgoftaar:
Healthcare Provider Summary Data for Fraud Classification. IRI 2022: 236-242 - [c380]John T. Hancock, Taghi M. Khoshgoftaar:
Optimizing Ensemble Trees for Big Data Healthcare Fraud Detection. IRI 2022: 243-249 - [c379]John T. Hancock, Taghi M. Khoshgoftaar, Justin M. Johnson:
The Effects of Random Undersampling for Big Data Medicare Fraud Detection. SOSE 2022: 141-146 - 2021
- [j186]Joffrey L. Leevy
, John T. Hancock, Richard Zuech, Taghi M. Khoshgoftaar:
Detecting cybersecurity attacks across different network features and learners. J. Big Data 8(1): 1-29 (2021) - [j185]Zahra Salekshahrezaee
, Joffrey L. Leevy
, Taghi M. Khoshgoftaar:
A reconstruction error-based framework for label noise detection. J. Big Data 8(1): 1-16 (2021) - [j184]Connor Shorten
, Taghi M. Khoshgoftaar, Borko Furht:
Deep Learning applications for COVID-19. J. Big Data 8(1): 1-54 (2021) - [j183]Flavio Villanustre, Arjuna Chala, Roger Dev, Lili Xu, Jesse Shaw, Borko Furht, Taghi M. Khoshgoftaar:
Modeling and tracking Covid-19 cases using Big Data analytics on HPCC system platformm. J. Big Data 8(1): 33 (2021) - [j182]Richard Zuech
, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting web attacks using random undersampling and ensemble learners. J. Big Data 8(1): 75 (2021) - [j181]Connor Shorten
, Taghi M. Khoshgoftaar, Borko Furht:
Text Data Augmentation for Deep Learning. J. Big Data 8(1): 101 (2021) - [j180]Naeem Seliya, Azadeh Abdollah Zadeh, Taghi M. Khoshgoftaar:
A literature review on one-class classification and its potential applications in big data. J. Big Data 8(1): 122 (2021) - [j179]John T. Hancock
, Taghi M. Khoshgoftaar:
Gradient Boosted Decision Tree Algorithms for Medicare Fraud Detection. SN Comput. Sci. 2(4): 268 (2021) - [j178]Justin M. Johnson
, Taghi M. Khoshgoftaar:
Medical Provider Embeddings for Healthcare Fraud Detection. SN Comput. Sci. 2(4): 276 (2021) - [c378]Joffrey L. Leevy, Taghi M. Khoshgoftaar, Jared M. Peterson:
Mitigating Class Imbalance for IoT Network Intrusion Detection: A Survey. BigDataService 2021: 143-148 - [c377]John T. Hancock, Taghi M. Khoshgoftaar:
Leveraging LightGBM for Categorical Big Data. BigDataService 2021: 149-154 - [c376]Robert K. L. Kennedy, Taghi M. Khoshgoftaar:
An Examination of Neural Networks on Cluster Computers. BigDataService 2021: 155-160 - [c375]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
An Easy-to-Classify Approach for the Bot-IoT Dataset. CogMI 2021: 172-179 - [c374]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Naeem Seliya:
IoT Reconnaissance Attack Classification with Random Undersampling and Ensemble Feature Selection. CIC 2021: 41-49 - [c373]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting SQL Injection Web Attacks Using Ensemble Learners and Data Sampling. CSR 2021: 27-34 - [c372]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Feature Popularity Between Different Web Attacks with Supervised Feature Selection Rankers. ICMLA 2021: 30-37 - [c371]Connor Shorten, Taghi M. Khoshgoftaar:
KerasBERT: Modeling the Keras Language. ICMLA 2021: 219-226 - [c370]John T. Hancock, Taghi M. Khoshgoftaar, Joffrey L. Leevy:
Detecting SSH and FTP Brute Force Attacks in Big Data. ICMLA 2021: 760-765 - [c369]Joffrey L. Leevy, John T. Hancock, Taghi M. Khoshgoftaar, Jared M. Peterson:
Detecting Information Theft Attacks in the Bot-IoT Dataset. ICMLA 2021: 807-812 - [c368]Justin M. Johnson, Taghi M. Khoshgoftaar:
Robust Thresholding Strategies for Highly Imbalanced and Noisy Data. ICMLA 2021: 1182-1188 - [c367]Connor Shorten, Taghi M. Khoshgoftaar:
Investigating the Generalization of Image Classifiers with Augmented Test Sets. ICTAI 2021: 10-17 - [c366]Zahra Salekshahrezaee
, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
Feature Extraction for Class Imbalance Using a Convolutional Autoencoder and Data Sampling. ICTAI 2021: 217-223 - [c365]Robert K. L. Kennedy, Justin M. Johnson, Taghi M. Khoshgoftaar:
The Effects of Class Label Noise on Highly-Imbalanced Big Data. ICTAI 2021: 1427-1433 - [c364]Justin M. Johnson, Taghi M. Khoshgoftaar:
Output Thresholding for Ensemble Learners and Imbalanced Big Data. ICTAI 2021: 1449-1454 - [c363]Clifford Kemp, Chad Calvert, Taghi M. Khoshgoftaar:
Detecting Slow Application-Layer DoS Attacks With PCA. IRI 2021: 176-183 - [c362]Michael Crawford, Taghi M. Khoshgoftaar:
Using Inductive Transfer Learning to Improve Hotel Review Spam Detection. IRI 2021: 248-254 - [c361]Richard Zuech, John T. Hancock, Taghi M. Khoshgoftaar:
Detecting Web Attacks in Severely Imbalanced Network Traffic Data. IRI 2021: 267-273 - [c360]John T. Hancock, Taghi M. Khoshgoftaar:
Impact of Hyperparameter Tuning in Classifying Highly Imbalanced Big Data. IRI 2021: 348-354 - [c359]Justin M. Johnson, Taghi M. Khoshgoftaar:
Encoding Techniques for High-Cardinality Features and Ensemble Learners. IRI 2021: 355-361 - [c358]Aline Anacleto, Taghi M. Khoshgoftaar, Evangelos I. Kaisar:
Predicting Traffic Incidents in Road Networks Using Vehicle Detector Data. ITSC 2021: 1431-1436 - [c357]Jared M. Peterson, Joffrey L. Leevy, Taghi M. Khoshgoftaar:
A Review and Analysis of the Bot-IoT Dataset. SOSE 2021: 20-27 - 2020
- [j177]Richard A. Bauder, Taghi M. Khoshgoftaar:
A study on rare fraud predictions with big Medicare claims fraud data. Intell. Data Anal. 24(1): 141-161 (2020) - [j176]Justin M. Johnson
, Taghi M. Khoshgoftaar:
The Effects of Data Sampling with Deep Learning and Highly Imbalanced Big Data. Inf. Syst. Frontiers 22(5): 1113-1131 (2020) - [j175]Tawfiq Hasanin
, Taghi M. Khoshgoftaar, Joffrey L. Leevy
, Richard A. Bauder:
Investigating class rarity in big data. J. Big Data 7(1): 23 (2020) - [j174]John T. Hancock, Taghi M. Khoshgoftaar:
Survey on categorical data for neural networks. J. Big Data 7(1): 28 (2020) - [j173]Joffrey L. Leevy
, Taghi M. Khoshgoftaar, Richard A. Bauder, Naeem Seliya:
Investigating the relationship between time and predictive model maintenance. J. Big Data 7(1): 36 (2020) - [j172]Joffrey L. Leevy
, Taghi M. Khoshgoftaar, Flavio Villanustre:
Survey on RNN and CRF models for de-identification of medical free text. J. Big Data 7(1): 73 (2020) - [j171]John T. Hancock
, Taghi M. Khoshgoftaar:
CatBoost for big data: an interdisciplinary review. J. Big Data 7(1): 94 (2020) - [j170]Joffrey L. Leevy
, Taghi M. Khoshgoftaar:
A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data. J. Big Data 7(1): 104 (2020) - [j169]Aaron N. Richter
, Taghi M. Khoshgoftaar:
Sample size determination for biomedical big data with limited labels. Netw. Model. Anal. Health Informatics Bioinform. 9(1): 12 (2020) - [c356]Joffrey L. Leevy
, John T. Hancock, Richard Zuech, Taghi M. Khoshgoftaar:
Detecting Cybersecurity Attacks Using Different Network Features with LightGBM and XGBoost Learners. CogMI 2020: 190-197 - [c355]Joffrey L. Leevy
, Taghi M. Khoshgoftaar:
A Short Survey of LSTM Models for De-identification of Medical Free Text. CIC 2020: 117-124 - [c354]Justin M. Johnson, Taghi M. Khoshgoftaar:
Hcpcs2Vec: Healthcare Procedure Embeddings for Medicare Fraud Prediction. CIC 2020: 145-152 - [c353]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Evaluating The Number of Trainable Parameters on Deep Maxout and LReLU Networks for Visual Recognition. ICMLA 2020: 415-421 - [c352]John T. Hancock, Taghi M. Khoshgoftaar:
Performance of CatBoost and XGBoost in Medicare Fraud Detection. ICMLA 2020: 572-579 - [c351]Robert K. L. Kennedy, Taghi M. Khoshgoftaar:
Accelerated Deep Learning on HPCC Systems. ICMLA 2020: 847-852 - [c350]Clifford Kemp, Chad Calvert, Taghi M. Khoshgoftaar:
Detection Methods of Slow Read DoS Using Full Packet Capture Data. IRI 2020: 9-16 - [c349]John T. Hancock, Taghi M. Khoshgoftaar:
Medicare Fraud Detection using CatBoost. IRI 2020: 97-103 - [c348]Justin M. Johnson, Taghi M. Khoshgoftaar:
Semantic Embeddings for Medical Providers and Fraud Detection. IRI 2020: 224-230
2010 – 2019
- 2019
- [j168]Aaron N. Richter, Taghi M. Khoshgoftaar:
Efficient learning from big data for cancer risk modeling: A case study with melanoma. Comput. Biol. Medicine 110: 29-39 (2019) - [j167]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Maxout Networks for Visual Recognition. Int. J. Multim. Data Eng. Manag. 10(4): 1-25 (2019) - [j166]Joseph D. Prusa, Ryan Sagul
, Taghi M. Khoshgoftaar:
Extracting Knowledge from Technical Reports for the Valuation of West Texas Intermediate Crude Oil Futures. Inf. Syst. Frontiers 21(1): 109-123 (2019) - [j165]Robert K. L. Kennedy, Taghi M. Khoshgoftaar, Flavio Villanustre
, Timothy Humphrey:
A parallel and distributed stochastic gradient descent implementation using commodity clusters. J. Big Data 6: 16 (2019) - [j164]Matthew Herland, Richard A. Bauder, Taghi M. Khoshgoftaar:
The effects of class rarity on the evaluation of supervised healthcare fraud detection models. J. Big Data 6: 21 (2019) - [j163]Justin M. Johnson, Taghi M. Khoshgoftaar:
Survey on deep learning with class imbalance. J. Big Data 6: 27 (2019) - [j162]Connor Shorten
, Taghi M. Khoshgoftaar:
A survey on Image Data Augmentation for Deep Learning. J. Big Data 6: 60 (2019) - [j161]Justin M. Johnson
, Taghi M. Khoshgoftaar:
Medicare fraud detection using neural networks. J. Big Data 6: 63 (2019) - [j160]Chad Calvert
, Taghi M. Khoshgoftaar:
Impact of class distribution on the detection of slow HTTP DoS attacks using Big Data. J. Big Data 6: 67 (2019) - [j159]Victor M. Herrera
, Taghi M. Khoshgoftaar, Flavio Villanustre
, Borko Furht:
Random forest implementation and optimization for Big Data analytics on LexisNexis's high performance computing cluster platform. J. Big Data 6: 68 (2019) - [j158]Tawfiq Hasanin
, Taghi M. Khoshgoftaar, Joffrey L. Leevy
, Naeem Seliya:
Examining characteristics of predictive models with imbalanced big data. J. Big Data 6: 69 (2019) - [j157]Gabriel Castaneda
, Paul Morris, Taghi M. Khoshgoftaar:
Evaluation of maxout activations in deep learning across several big data domains. J. Big Data 6: 72 (2019) - [j156]Tawfiq Hasanin
, Taghi M. Khoshgoftaar, Joffrey L. Leevy
, Richard A. Bauder:
Severely imbalanced Big Data challenges: investigating data sampling approaches. J. Big Data 6: 107 (2019) - [j155]Aaron N. Richter
, Taghi M. Khoshgoftaar:
Melanoma risk modeling from limited positive samples. Netw. Model. Anal. Health Informatics Bioinform. 8(1): 7 (2019) - [c347]Tawfiq Hasanin
, Taghi M. Khoshgoftaar, Joffrey L. Leevy
, Naeem Seliya:
Investigating Random Undersampling and Feature Selection on Bioinformatics Big Data. BigDataService 2019: 346-356 - [c346]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Maxout Neural Network for Big Data Medical Fraud Detection. BigDataService 2019: 357-362 - [c345]Stevens Dormezil, Taghi M. Khoshgoftaar, Federica Robinson-Bryant:
Differentiating between Educational Data Mining and Learning Analytics: A Bibliometric Approach. EDM (Workshops) 2019: 17-22 - [c344]Gabriel Castaneda, Paul Morris, Joseph D. Prusa, Taghi M. Khoshgoftaar:
Investigation of Maxout Activations on Convolutional Neural Networks for Big Data Text Sentiment Analysis. FLAIRS 2019: 250-256 - [c343]Chad Calvert, Clifford Kemp, Taghi M. Khoshgoftaar, Maryam M. Najafabadi:
Detecting Slow HTTP POST DoS Attacks Using Netflow Features. FLAIRS 2019: 387-390 - [c342]Justin M. Johnson, Taghi M. Khoshgoftaar:
Deep Learning and Thresholding with Class-Imbalanced Big Data. ICMLA 2019: 755-762 - [c341]Aaron N. Richter, Taghi M. Khoshgoftaar:
Learning Curve Estimation with Large Imbalanced Datasets. ICMLA 2019: 763-768 - [c340]Huanjing Wang, Taghi M. Khoshgoftaar:
A Study on Software Metric Selection for Software Fault Prediction. ICMLA 2019: 1045-1050 - [c339]Joffrey L. Leevy
, Taghi M. Khoshgoftaar, Richard A. Bauder, Naeem Seliya:
The Effect of Time on the Maintenance of a Predictive Model. ICMLA 2019: 1891-1896 - [c338]Aaron N. Richter, Taghi M. Khoshgoftaar:
Approximating Learning Curves for Imbalanced Big Data with Limited Labels. ICTAI 2019: 237-242 - [c337]Chad Calvert, Taghi M. Khoshgoftaar:
Threshold Based Optimization of Performance Metrics with Severely Imbalanced Big Security Data. ICTAI 2019: 1328-1334 - [c336]Richard A. Bauder, Matthew Herland, Taghi M. Khoshgoftaar:
Evaluating Model Predictive Performance: A Medicare Fraud Detection Case Study. IRI 2019: 9-14 - [c335]Tawfiq Hasanin
, Taghi M. Khoshgoftaar, Joffrey L. Leevy
:
A Comparison of Performance Metrics with Severely Imbalanced Network Security Big Data. IRI 2019: 83-88 - [c334]Gabriel Castaneda, Paul Morris, Taghi M. Khoshgoftaar:
Deep Learning with Maxout Activations for Visual Recognition and Verification. IRI 2019: 135-142 - [c333]Justin M. Johnson, Taghi M. Khoshgoftaar:
Deep Learning and Data Sampling with Imbalanced Big Data. IRI 2019: 175-183 - [e4]M. Arif Wani, Taghi M. Khoshgoftaar, Dingding Wang, Huanjing Wang, Naeem Seliya:
18th IEEE International Conference On Machine Learning And Applications, ICMLA 2019, Boca Raton, FL, USA, December 16-19, 2019. IEEE 2019, ISBN 978-1-7281-4550-1 [contents] - 2018
- [j154]Aaron N. Richter, Taghi M. Khoshgoftaar:
A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. Artif. Intell. Medicine 90: 1-14 (2018) - [j153]