default search action
Arie van Deursen
Person information
- affiliation: Delft University of Technology, The Netherlands
- affiliation (former): National Research Institute for Mathematics and Computer Science, Amsterdam, Netherlands
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c204]Patrick Altmeyer, Mojtaba Farmanbar, Arie van Deursen, Cynthia C. S. Liem:
Faithful Model Explanations through Energy-Constrained Conformal Counterfactuals. AAAI 2024: 10829-10837 - [c203]Aral de Moor, Arie van Deursen, Maliheh Izadi:
A Transformer-Based Approach for Smart Invocation of Automatic Code Completion. AIware 2024 - [c202]Lorena Poenaru-Olaru, Natalia Karpova, Luis Cruz, Jan S. Rellermeyer, Arie van Deursen:
Is Your Anomaly Detector Ready for Change? Adapting AIOps Solutions to the Real World. CAIN 2024: 222-233 - [c201]George Siachamis, George Christodoulou, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Asterios Katsifodimos:
Evaluating Stream Processing Autoscalers. DEBS 2024: 110-122 - [c200]Bob Brockbernd, Nikita Koval, Arie van Deursen, Burcu Kulahcioglu Ozkan:
Understanding Concurrency Bugs in Real-World Programs with Kotlin Coroutines. ECOOP 2024: 8:1-8:20 - [c199]Jonathan Katzy, Razvan Mihai Popescu, Arie van Deursen, Maliheh Izadi:
An Exploratory Investigation into Code License Infringements in Large Language Model Training Datasets. FORGE 2024: 74-85 - [c198]George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris Carbone, Asterios Katsifodimos:
CheckMate: Evaluating Checkpointing Protocols for Streaming Dataflows. ICDE 2024: 4030-4043 - [c197]Eileen Kapel, Luis Cruz, Diomidis Spinellis, Arie van Deursen:
On the Difficulty of Identifying Incident-Inducing Changes. ICSE-SEIP 2024: 36-46 - [c196]Ali Al-Kaswan, Maliheh Izadi, Arie van Deursen:
Traces of Memorisation in Large Language Models for Code. ICSE 2024: 78:1-78:12 - [c195]Maliheh Izadi, Jonathan Katzy, Tim van Dam, Marc Otten, Razvan Mihai Popescu, Arie van Deursen:
Language Models for Code Completion: A Practical Evaluation. ICSE 2024: 79:1-79:13 - [c194]Arumoy Shome, Luís Cruz, Arie van Deursen:
Data vs. Model Machine Learning Fairness Testing: An Empirical Study. ICSE Companion 2024: 366-367 - [c193]Arumoy Shome, Luis Cruz, Arie van Deursen:
Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions. NLBSE@ICSE 2024: 29-32 - [i54]Arumoy Shome, Luis Cruz, Arie van Deursen:
Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions. CoRR abs/2401.07696 (2024) - [i53]Arumoy Shome, Luis Cruz, Arie van Deursen:
Data vs. Model Machine Learning Fairness Testing: An Empirical Study. CoRR abs/2401.07697 (2024) - [i52]Lorena Poenaru-Olaru, Luis Cruz, Jan S. Rellermeyer, Arie van Deursen:
McUDI: Model-Centric Unsupervised Degradation Indicator for Failure Prediction AIOps Solutions. CoRR abs/2401.14093 (2024) - [i51]Maliheh Izadi, Jonathan Katzy, Tim van Dam, Marc Otten, Razvan Mihai Popescu, Arie van Deursen:
Language Models for Code Completion: A Practical Evaluation. CoRR abs/2402.16197 (2024) - [i50]George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Paris Carbone, Asterios Katsifodimos:
CheckMate: Evaluating Checkpointing Protocols for Streaming Dataflows. CoRR abs/2403.13629 (2024) - [i49]Jonathan Katzy, Razvan Mihai Popescu, Arie van Deursen, Maliheh Izadi:
An Exploratory Investigation into Code License Infringements in Large Language Model Training Datasets. CoRR abs/2403.15230 (2024) - [i48]Aral de Moor, Arie van Deursen, Maliheh Izadi:
A Transformer-Based Approach for Smart Invocation of Automatic Code Completion. CoRR abs/2405.14753 (2024) - [i47]Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin, Maria Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, Timofey Bryksin:
Long Code Arena: a Set of Benchmarks for Long-Context Code Models. CoRR abs/2406.11612 (2024) - [i46]Arumoy Shome, Luis Cruz, Diomidis Spinellis, Arie van Deursen:
Understanding Feedback Mechanisms in Machine Learning Jupyter Notebooks. CoRR abs/2408.00153 (2024) - 2023
- [j60]Chandra Shekhar Maddila, Sai Surya Upadrasta, Chetan Bansal, Nachiappan Nagappan, Georgios Gousios, Arie van Deursen:
Nudge: Accelerating Overdue Pull Requests toward Completion. ACM Trans. Softw. Eng. Methodol. 32(2): 35:1-35:30 (2023) - [j59]Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, Arie van Deursen:
Generating Class-Level Integration Tests Using Call Site Information. IEEE Trans. Software Eng. 49(4): 2069-2087 (2023) - [c192]Arie van Deursen:
Getting Things Done: The Eelco Way. Eelco Visser Commemorative Symposium 2023: 1:1-1:4 - [c191]Tim Yarally, Luis Cruz, Daniel Feitosa, June Sallou, Arie van Deursen:
Uncovering Energy-Efficient Practices in Deep Learning Training: Preliminary Steps Towards Green AI. CAIN 2023: 25-36 - [c190]Lorena Poenaru-Olaru, Luis Cruz, Jan S. Rellermeyer, Arie van Deursen:
Maintaining and Monitoring AIOps Models Against Concept Drift. CAIN 2023: 98-99 - [c189]Arumoy Shome, Luís Cruz, Arie van Deursen:
Towards Understanding Machine Learning Testing in Practise. CAIN 2023: 117-118 - [c188]George Siachamis, Kyriakos Psarakis, Marios Fragkoulis, Odysseas Papapetrou, Arie van Deursen, Asterios Katsifodimos:
Adaptive Distributed Streaming Similarity Joins. DEBS 2023: 25-36 - [c187]Tim Yarally, Luís Cruz, Daniel Feitosa, June Sallou, Arie van Deursen:
Batching for Green AI - An Exploratory Study on Inference. SEAA 2023: 112-119 - [c186]Lorena Poenaru-Olaru, June Sallou, Luis Cruz, Jan S. Rellermeyer, Arie van Deursen:
Retrain AI Systems Responsibly! Use Sustainable Concept Drift Adaptation Techniques. GREENS@ICSE 2023: 17-18 - [c185]George Siachamis, Job Kanis, Wybe Koper, Kyriakos Psarakis, Marios Fragkoulis, Arie van Deursen, Asterios Katsifodimos:
Towards Evaluating Stream Processing Autoscalers. ICDEW 2023: 95-99 - [c184]Jiyang Zhang, Chandra Shekhar Maddila, Ram Bairi, Christian Bird, Ujjwal Raizada, Apoorva Agrawal, Yamini Jhawar, Kim Herzig, Arie van Deursen:
Using Large-scale Heterogeneous Graph Representation Learning for Code Review Recommendations at Microsoft. ICSE-SEIP 2023: 162-172 - [c183]Tim van Dam, Maliheh Izadi, Arie van Deursen:
Enriching Source Code with Contextual Data for Code Completion Models: An Empirical Study. MSR 2023: 170-182 - [c182]Ali Al-Kaswan, Maliheh Izadi, Arie van Deursen:
STACC: Code Comment Classification using SentenceTransformers. NLBSE@ICSE 2023: 28-31 - [c181]Patrick Altmeyer, Giovan Angela, Aleksander Buszydlik, Karol Dobiczek, Arie van Deursen, Cynthia C. S. Liem:
Endogenous Macrodynamics in Algorithmic Recourse. SaTML 2023: 418-431 - [c180]Jonathan Katzy, Maliheh Izadi, Arie van Deursen:
On the Impact of Language Selection for Training and Evaluating Programming Language Models. SCAM 2023: 271-276 - [c179]Elvan Kula, Eric Greuter, Arie van Deursen, Georgios Gousios:
Dynamic Prediction of Delays in Software Projects using Delay Patterns and Bayesian Modeling. ESEC/SIGSOFT FSE 2023: 1012-1023 - [c178]Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premkumar T. Devanbu, Arie van Deursen:
Extending Source Code Pre-Trained Language Models to Summarise Decompiled Binarie. SANER 2023: 260-271 - [d13]Jonathan Katzy, Maliheh Izadi, Arie van Deursen:
On the Impact of Language Selection for Training and Evaluating Programming Language Models. Zenodo, 2023 - [d12]Tim Yarally, Luís Cruz, Daniel Feitosa, June Sallou, Arie van Deursen:
Material of the paper entitled "Uncovering Energy-Efficient Practices in Deep Learning Training: Preliminary Steps Towards Green AI". Zenodo, 2023 - [i45]Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premkumar T. Devanbu, Arie van Deursen:
Extending Source Code Pre-Trained Language Models to Summarise Decompiled Binaries. CoRR abs/2301.01701 (2023) - [i44]Ali Al-Kaswan, Maliheh Izadi, Arie van Deursen:
Targeted Attack on GPT-Neo for the SATML Language Model Data Extraction Challenge. CoRR abs/2302.07735 (2023) - [i43]Ali Al-Kaswan, Maliheh Izadi, Arie van Deursen:
STACC: Code Comment Classification using SentenceTransformers. CoRR abs/2302.13149 (2023) - [i42]Tim Yarally, Luís Cruz, Daniel Feitosa, June Sallou, Arie van Deursen:
Uncovering Energy-Efficient Practices in Deep Learning Training: Preliminary Steps Towards Green AI. CoRR abs/2303.13972 (2023) - [i41]Tim van Dam, Maliheh Izadi, Arie van Deursen:
Enriching Source Code with Contextual Data for Code Completion Models: An Empirical Study. CoRR abs/2304.12269 (2023) - [i40]Arumoy Shome, Luis Cruz, Arie van Deursen:
Towards Understanding Machine Learning Testing in Practise. CoRR abs/2305.04988 (2023) - [i39]Tim Yarally, Luis Cruz, Daniel Feitosa, June Sallou, Arie van Deursen:
Batching for Green AI - An Exploratory Study on Inference. CoRR abs/2307.11434 (2023) - [i38]Patrick Altmeyer, Arie van Deursen, Cynthia C. S. Liem:
Explaining Black-Box Models through Counterfactuals. CoRR abs/2308.07198 (2023) - [i37]Patrick Altmeyer, Giovan Angela, Aleksander Buszydlik, Karol Dobiczek, Arie van Deursen, Cynthia C. S. Liem:
Endogenous Macrodynamics in Algorithmic Recourse. CoRR abs/2308.08187 (2023) - [i36]Jonathan Katzy, Maliheh Izadi, Arie van Deursen:
On the Impact of Language Selection for Training and Evaluating Programming Language Models. CoRR abs/2308.13354 (2023) - [i35]Elvan Kula, Eric Greuter, Arie van Deursen, Georgios Gousios:
Dynamic Prediction of Delays in Software Projects using Delay Patterns and Bayesian Modeling. CoRR abs/2309.12449 (2023) - [i34]Lorena Poenaru-Olaru, Natalia Karpova, Luis Cruz, Jan S. Rellermeyer, Arie van Deursen:
Maintenance Techniques for Anomaly Detection AIOps Solutions. CoRR abs/2311.10421 (2023) - [i33]Patrick Altmeyer, Mojtaba Farmanbar, Arie van Deursen, Cynthia C. S. Liem:
Faithful Model Explanations through Energy-Constrained Conformal Counterfactuals. CoRR abs/2312.10648 (2023) - [i32]Ali Al-Kaswan, Maliheh Izadi, Arie van Deursen:
Traces of Memorisation in Large Language Models for Code. CoRR abs/2312.11658 (2023) - 2022
- [j58]Chandra Shekhar Maddila, Nachiappan Nagappan, Christian Bird, Georgios Gousios, Arie van Deursen:
ConE: A Concurrent Edit Detection Tool for Large-scale Software Development. ACM Trans. Softw. Eng. Methodol. 31(2): 22:1-22:26 (2022) - [j57]Elvan Kula, Eric Greuter, Arie van Deursen, Georgios Gousios:
Factors Affecting On-Time Delivery in Large-Scale Agile Software Development. IEEE Trans. Software Eng. 48(9): 3573-3592 (2022) - [c177]Lorena Poenaru-Olaru, Luis Cruz, Arie van Deursen, Jan S. Rellermeyer:
Are Concept Drift Detectors Reliable Alarming Systems? - A Comparative Study. IEEE Big Data 2022: 3364-3373 - [c176]Arumoy Shome, Luís Cruz, Arie van Deursen:
Data smells in public datasets. CAIN 2022: 205-216 - [c175]Haiyin Zhang, Luís Cruz, Arie van Deursen:
Code smells for machine learning applications. CAIN 2022: 217-228 - [c174]Sara Salimzadeh, Ujwal Gadiraju, Claudia Hauff, Arie van Deursen:
Exploring the Feasibility of Crowd-Powered Decomposition of Complex User Questions in Text-to-SQL Tasks. HT 2022: 154-165 - [c173]Kevin Anderson, Denise Visser, Jan-Willem Mannen, Yuxiang Jiang, Arie van Deursen:
Challenges in Applying Continuous Experimentation: A Practitioners' Perspective. ICSE (SEIP) 2022: 107-114 - [c172]Mitchell Olsthoorn, Dimitri Michel Stallenberg, Arie van Deursen, Annibale Panichella:
SynTest-Solidity: Automated Test Case Generation and Fuzzing for Smart Contracts. ICSE-Companion 2022: 202-206 - [c171]Bart van Oort, Luis Cruz, Babak Loni, Arie van Deursen:
"Project smells" - Experiences in Analysing the Software Quality of ML Projects with mllint. ICSE (SEIP) 2022: 211-220 - [c170]Matthías Páll Gissurarson, Leonhard Applis, Annibale Panichella, Arie van Deursen, David Sands:
PROPR: Property-Based Automatic Program Repair. ICSE 2022: 1768-1780 - [c169]Mitchell Olsthoorn, Arie van Deursen, Annibale Panichella:
Guiding Automated Test Case Generation for Transaction-Reverting Statements in Smart Contracts. ICSME 2022: 163-174 - [c168]Ching-Chi Chuang, Luís Cruz, Robbert van Dalen, Vladimir Mikovski, Arie van Deursen:
Removing dependencies from large software projects: are you really sure? SCAM 2022: 105-115 - [c167]Chandra Shekhar Maddila, Suhas Shanbhogue, Apoorva Agrawal, Thomas Zimmermann, Chetan Bansal, Nicole Forsgren, Divyanshu Agrawal, Kim Herzig, Arie van Deursen:
Nalanda: a socio-technical graph platform for building software analytics tools at enterprise scale. ESEC/SIGSOFT FSE 2022: 1246-1256 - [d11]Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Prem Devanbu, Arie van Deursen:
BinT5: Binary Code Summarisation Model. Zenodo, 2022 - [d10]Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Prem Devanbu, Arie van Deursen:
CAPYBARA: Decompiled Binary Functions and Related Summaries. Zenodo, 2022 - [d9]Leonhard Applis, Annibale Panichella, Arie van Deursen:
Reproduction: Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program Transformations. Version 1.0. Zenodo, 2022 [all versions] - [d8]Leonhard Applis, Annibale Panichella, Arie van Deursen:
Reproduction: Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program Transformations. Version 1.0. Zenodo, 2022 [all versions] - [d7]Leonhard Applis, Annibale Panichella, Arie van Deursen:
Reproduction: Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program Transformations. Version 1.1. Zenodo, 2022 [all versions] - [d6]Mitchell Olsthoorn, Arie van Deursen, Annibale Panichella:
Replication package of "Guiding Automated Test Case Generation for Transaction-Reverting Statements in Smart Contracts". Zenodo, 2022 - [i31]Bart van Oort, Luis Cruz, Babak Loni, Arie van Deursen:
"Project smells" - Experiences in Analysing the Software Quality of ML Projects with mllint. CoRR abs/2201.08246 (2022) - [i30]Jiyang Zhang, Chandra Shekhar Maddila, Ram Bairi, Christian Bird, Ujjwal Raizada, Apoorva Agrawal, Yamini Jhawar, Kim Herzig, Arie van Deursen:
Using Large-scale Heterogeneous Graph Representation Learning for Code Review Recommendations. CoRR abs/2202.02385 (2022) - [i29]Arumoy Shome, Luis Cruz, Arie van Deursen:
Data Smells in Public Datasets. CoRR abs/2203.08007 (2022) - [i28]Haiyin Zhang, Luis Cruz, Arie van Deursen:
Code Smells for Machine Learning Applications. CoRR abs/2203.13746 (2022) - [i27]Maliheh Izadi, Pooya Rostami Mazrae, Tom Mens, Arie van Deursen:
LinkFormer: Automatic Contextualised Link Recovery of Software Artifacts in both Project-based and Transfer Learning Settings. CoRR abs/2211.00381 (2022) - [i26]Lorena Poenaru-Olaru, Luis Cruz, Arie van Deursen, Jan S. Rellermeyer:
Are Concept Drift Detectors Reliable Alarming Systems? - A Comparative Study. CoRR abs/2211.13098 (2022) - 2021
- [j56]Mark Haakman, Luis Cruz, Hennie Huijgens, Arie van Deursen:
AI lifecycle models need to be revised. Empir. Softw. Eng. 26(5): 95 (2021) - [j55]Jeanderson Cândido, Maurício Aniche, Arie van Deursen:
Log-based software monitoring: a systematic mapping study. PeerJ Comput. Sci. 7: e489 (2021) - [j54]Alexandre Perez, Rui Abreu, Arie van Deursen:
A Theoretical and Empirical Analysis of Program Spectra Diagnosability. IEEE Trans. Software Eng. 47(2): 412-431 (2021) - [c166]Bart van Oort, Luis Cruz, Maurício Aniche, Arie van Deursen:
The Prevalence of Code Smells in Machine Learning projects. WAIN@ICSE 2021: 35-42 - [c165]Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, Andy Zaidman, Arie van Deursen:
Summary of Search-based Crash Reproduction using Behavioral Model Seeding. ICST 2021: 281 - [c164]Elvan Kula, Arie van Deursen, Georgios Gousios:
Modeling Team Dynamics for the Characterization and Prediction of Delays in User Stories. ASE 2021: 991-1002 - [c163]Leonhard Applis, Annibale Panichella, Arie van Deursen:
Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program Transformations. ASE 2021: 1377-1381 - [c162]Jeanderson Cândido, Jan Haesen, Maurício Aniche, Arie van Deursen:
An Exploratory Study of Log Placement Recommendation in an Enterprise System. MSR 2021: 143-154 - [i25]Chandra Shekhar Maddila, Nachiappan Nagappan, Christian Bird, Georgios Gousios, Arie van Deursen:
ConE: A Concurrent Edit Detection Tool for Large ScaleSoftware Development. CoRR abs/2101.06542 (2021) - [i24]Jeanderson Cândido, Jan Haesen, Maurício Finavaro Aniche, Arie van Deursen:
An Exploratory Study of Log Placement Recommendation in an Enterprise System. CoRR abs/2103.01755 (2021) - [i23]Bart van Oort, Luis Cruz, Maurício Finavaro Aniche, Arie van Deursen:
The Prevalence of Code Smells in Machine Learning projects. CoRR abs/2103.04146 (2021) - [i22]Vivek Arora, Enrique Larios Vargas, Maurício Aniche, Arie van Deursen:
Secure Software Engineering in the Financial Services: A Practitioners' Perspective. CoRR abs/2104.03476 (2021) - [i21]Chandra Shekhar Maddila, Apoorva Agrawal, Thomas Zimmermann, Nicole Forsgren, Kim Herzig, Arie van Deursen:
Nalanda: A Socio-Technical Graph for Building Software Analytics Tools at Enterprise Scale. CoRR abs/2110.08403 (2021) - 2020
- [j53]Mozhan Soltani, Pouria Derakhshanfar, Xavier Devroey, Arie van Deursen:
A benchmark-based evaluation of search-based crash reproduction. Empir. Softw. Eng. 25(1): 96-138 (2020) - [j52]Pouria Derakhshanfar, Xavier Devroey, Gilles Perrouin, Andy Zaidman, Arie van Deursen:
Search-based crash reproduction using behavioural model seeding. Softw. Test. Verification Reliab. 30(3) (2020) - [j51]Kristín Fjóla Tómasdóttir, Mauricio Finavaro Aniche, Arie van Deursen:
The Adoption of JavaScript Linters in Practice: A Case Study on ESLint. IEEE Trans. Software Eng. 46(8): 863-891 (2020) - [j50]Mozhan Soltani, Annibale Panichella, Arie van Deursen:
Search-Based Crash Reproduction and Its Impact on Debugging. IEEE Trans. Software Eng. 46(12): 1294-1317 (2020) - [c161]Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, Annibale Panichella:
Crash reproduction using helper objectives. GECCO Companion 2020: 309-310 - [c160]Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, Annibale Panichella:
Good Things Come In Threes: Improving Search-based Crash Reproduction With Helper Objectives. ASE 2020: 211-223 - [c159]Mitchell Olsthoorn, Arie van Deursen, Annibale Panichella:
Generating Highly-structured Input Data by Combining Search-based Testing and Grammar-based Fuzzing. ASE 2020: 1224-1228 - [c158]Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, Arie van Deursen:
Botsing, a Search-based Crash Reproduction Framework for Java. ASE 2020: 1278-1282 - [c157]Hennie Huijgens, Ayushi Rastogi, Ernst Mulders, Georgios Gousios, Arie van Deursen:
Questions for data scientists in software engineering: a replication. ESEC/SIGSOFT FSE 2020: 568-579 - [d5]Pouria Derakhshanfar, Xavier Devroey, Andy Zaidman, Arie van Deursen, Annibale Panichella:
Replication package of "Good Things Come In Threes: Improving Search-based Crash Reproduction With Helper Objectives". Zenodo, 2020 - [i20]Pouria Derakhshanfar, Xavier Devroey, Annibale Panichella, Andy Zaidman, Arie van Deursen:
Towards Integration-Level Test Case Generation Using Call Site Information. CoRR abs/2001.04221 (2020) - [i19]Mark Haakman, Luis Cruz, Hennie Huijgens, Arie van Deursen:
AI Lifecycle Models Need To Be Revised. An Exploratory Study in Fintech. CoRR abs/2010.02716 (2020) - [i18]Hennie Huijgens, Ayushi Rastogi, Ernst Mulders, Georgios Gousios, Arie van Deursen:
Questions for Data Scientists in Software Engineering: A Replication. CoRR abs/2010.03165 (2020) - [i17]Chandra Shekhar Maddila, Sai Surya Upadrasta, Chetan Bansal, Nachiappan Nagappan, Georgios Gousios, Arie van Deursen:
Nudge: Accelerating Overdue Pull Requests Towards Completion. CoRR abs/2011.12468 (2020)
2010 – 2019
- 2019
- [j49]Marco di Biase, Magiel Bruntink, Arie van Deursen, Alberto Bacchelli:
The effects of change decomposition on code review - a controlled experiment. PeerJ Comput. Sci. 5: e193 (2019) - [j48]Markus Voelter, Bernd Kolb, Tamás Szabó, Daniel Ratiu, Arie van Deursen:
Lessons learned from developing mbeddr: a case study in language engineering with MPS. Softw. Syst. Model. 18(1): 585-630 (2019) - [c156]Sohon Roy, Arie van Deursen, Felienne Hermans:
Perceived Relevance of Automatic Code Inspection in End-User Development: A Study on VBA. EASE 2019: 167-176 - [c155]Marco di Biase, Ayushi Rastogi, Magiel Bruntink, Arie van Deursen:
The delta maintainability model: measuring maintainability of fine-grained code changes. TechDebt@ICSE 2019: 113-122 - [c154]Hennie Huijgens, Eric Greuter, Jerry Brons, Evert A. van Doorn, Ioannis Papadopoulos, Francisco Morales Martinez, Mauricio Finavaro Aniche, Otto Visser, Arie van Deursen:
Factors affecting cloud infra-service development lead times: a case study at ING. ICSE (SEIP) 2019: 233-242 - [c153]