


Остановите войну!
for scientists:


default search action
Thomas Bartz-Beielstein
Thomas Beielstein
Person information

- affiliation: TH Köln, Institute for Data Science, Engineering, and Analytics, Germany
- affiliation (former): Technical University of Dortmund, Germany
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [c62]Sowmya Chandrasekaran
, Thomas Bartz-Beielstein
:
A Robust Statistical Framework for the Analysis of the Performances of Stochastic Optimization Algorithms Using the Principles of Severity. EvoApplications@EvoStar 2023: 426-441 - [p18]Thomas Bartz-Beielstein, Martin Zaefferer, Olaf Mersmann:
Tuning: Methodology. Hyperparameter Tuning for Machine and Deep Learning with R 2023: 7-26 - [p17]Thomas Bartz-Beielstein, Martin Zaefferer:
Models. Hyperparameter Tuning for Machine and Deep Learning with R 2023: 27-69 - [p16]Thomas Bartz-Beielstein, Martin Zaefferer:
Hyperparameter Tuning Approaches. Hyperparameter Tuning for Machine and Deep Learning with R 2023: 71-119 - [p15]Thomas Bartz-Beielstein, Olaf Mersmann, Sowmya Chandrasekaran:
Ranking and Result Aggregation. Hyperparameter Tuning for Machine and Deep Learning with R 2023: 121-161 - [p14]Thomas Bartz-Beielstein:
Hyperparameter Tuning and Optimization Applications. Hyperparameter Tuning for Machine and Deep Learning with R 2023: 165-175 - [p13]Thomas Bartz-Beielstein, Sowmya Chandrasekaran, Frederik Rehbach, Martin Zaefferer:
Case Study I: Tuning Random Forest (Ranger). Hyperparameter Tuning for Machine and Deep Learning with R 2023: 187-220 - [p12]Thomas Bartz-Beielstein, Sowmya Chandrasekaran, Frederik Rehbach:
Case Study II: Tuning of Gradient Boosting (xgboost). Hyperparameter Tuning for Machine and Deep Learning with R 2023: 221-234 - [p11]Thomas Bartz-Beielstein, Sowmya Chandrasekaran, Frederik Rehbach:
Case Study III: Tuning of Deep Neural Networks. Hyperparameter Tuning for Machine and Deep Learning with R 2023: 235-269 - [p10]Martin Zaefferer, Olaf Mersmann, Thomas Bartz-Beielstein:
Global Study: Influence of Tuning. Hyperparameter Tuning for Machine and Deep Learning with R 2023: 283-301 - [e5]Eva Bartz, Thomas Bartz-Beielstein
, Martin Zaefferer, Olaf Mersmann:
Hyperparameter Tuning for Machine and Deep Learning with R - A Practical Guide. Springer 2023, ISBN 978-981-19-5169-5 [contents] - [i30]Thomas Bartz-Beielstein:
PyTorch Hyperparameter Tuning - A Tutorial for spotPython. CoRR abs/2305.11930 (2023) - [i29]Thomas Bartz-Beielstein:
Hyperparameter Tuning Cookbook: A guide for scikit-learn, PyTorch, river, and spotPython. CoRR abs/2307.10262 (2023) - 2022
- [j16]Aljosa Vodopija, Jörg Stork, Thomas Bartz-Beielstein
, Bogdan Filipic
:
Elevator group control as a constrained multiobjective optimization problem. Appl. Soft Comput. 115: 108277 (2022) - [j15]Margarita Rebolledo, Daan Zeeuwe
, Thomas Bartz-Beielstein
, A. E. Eiben:
Co-optimizing for task performance and energy efficiency in evolvable robots. Eng. Appl. Artif. Intell. 113: 104968 (2022) - [j14]Jörg Stork
, A. E. Eiben, Thomas Bartz-Beielstein
:
A new taxonomy of global optimization algorithms. Nat. Comput. 21(2): 219-242 (2022) - [j13]Frederik Rehbach
, Martin Zaefferer, Andreas Fischbach
, Günter Rudolph
, Thomas Bartz-Beielstein
:
Benchmark-Driven Configuration of a Parallel Model-Based Optimization Algorithm. IEEE Trans. Evol. Comput. 26(6): 1365-1379 (2022) - 2021
- [c61]Thomas Bartz-Beielstein
, Marcel Dröscher, Alpar Gür, Alexander Hinterleitner, Tom Lawton, Olaf Mersmann, Dessislava Peeva, Lennard Reese, Nicolas Rehbach, Frederik Rehbach, Amrita Sen, Aleksandr Subbotin, Martin Zaefferer:
Optimization and Adaptation of a Resource Planning Tool for Hospitals Under Special Consideration of the COVID-19 Pandemic. CEC 2021: 728-735 - [c60]Margarita Rebolledo, A. E. Eiben, Thomas Bartz-Beielstein
:
Bayesian Networks for Mood Prediction Using Unobtrusive Ecological Momentary Assessments. EvoApplications 2021: 373-387 - [c59]Margarita Rebolledo, Daan Zeeuwe, Thomas Bartz-Beielstein
, A. E. Eiben:
Impact of energy efficiency on the morphology and behaviour of evolved robots. GECCO Companion 2021: 109-110 - [c58]Thomas Bartz-Beielstein
, Marcel Dröscher, Alpar Gür, Alexander Hinterleitner, Olaf Mersmann, Dessislava Peeva, Lennard Reese, Nicolas Rehbach, Frederik Rehbach, A. Sen, Aleksandr Subbotin, Martin Zaefferer:
Resource planning for hospitals under special consideration of the COVID-19 pandemic: optimization and sensitivity analysis. GECCO Companion 2021: 293-294 - [c57]Jörg Stork, Martin Zaefferer, Nils Eisler, Patrick Tichelmann, Thomas Bartz-Beielstein
, A. E. Eiben:
Behavior-based neuroevolutionary training in reinforcement learning. GECCO Companion 2021: 1753-1761 - [i28]Thomas Bartz-Beielstein
, Marcel Dröscher, Alpar Gür, Alexander Hinterleitner, Olaf Mersmann, Dessislava Peeva, Lennard Reese, Nicolas Rehbach, Frederik Rehbach, Amrita Sen, Aleksandr Subbotin, Martin Zaefferer:
Resource Planning for Hospitals Under Special Consideration of the COVID-19 Pandemic: Optimization and Sensitivity Analysis. CoRR abs/2105.07420 (2021) - [i27]Jörg Stork, Martin Zaefferer, Nils Eisler, Patrick Tichelmann, Thomas Bartz-Beielstein
, A. E. Eiben:
Behavior-based Neuroevolutionary Training in Reinforcement Learning. CoRR abs/2105.07960 (2021) - [i26]Thomas Bartz-Beielstein
:
Surrogate Model Based Hyperparameter Tuning for Deep Learning with SPOT. CoRR abs/2105.14625 (2021) - [i25]Margarita Rebolledo, Daan Zeeuwe, Thomas Bartz-Beielstein, A. E. Eiben:
Impact of Energy Efficiency on the Morphology and Behaviour of Evolved Robots. CoRR abs/2107.05249 (2021) - [i24]Eva Bartz, Martin Zaefferer, Olaf Mersmann, Thomas Bartz-Beielstein:
Experimental Investigation and Evaluation of Model-based Hyperparameter Optimization. CoRR abs/2107.08761 (2021) - [i23]Jörg Stork, Philip Wenzel, Severin Landwein, María-Elena Algorri, Martin Zaefferer, Wolfgang Kusch, Martin Staubach, Thomas Bartz-Beielstein, Hartmut Köhn, Hermann Dejager, Christian Wolf:
Underwater Acoustic Networks for Security Risk Assessment in Public Drinking Water Reservoirs. CoRR abs/2107.13977 (2021) - 2020
- [j12]Andreas Fischbach
, Thomas Bartz-Beielstein
:
Improving the reliability of test functions generators. Appl. Soft Comput. 92: 106315 (2020) - [c56]Jörg Stork
, Martin Zaefferer
, Thomas Bartz-Beielstein
, A. E. Eiben
:
Understanding the Behavior of Reinforcement Learning Agents. BIOMA 2020: 148-160 - [c55]Margarita Rebolledo, Ruxandra Stoean, A. E. Eiben, Thomas Bartz-Beielstein
:
Hybrid Variable Selection and Support Vector Regression for Gas Sensor Optimization. BIOMA 2020: 281-293 - [c54]Lorenzo Gentile, Gianluca Filippi, Edmondo A. Minisci, Thomas Bartz-Beielstein
, Massimiliano Vasile:
Preliminary spacecraft design by means of Structured-Chromosome Genetic Algorithms. CEC 2020: 1-8 - [c53]Lorenzo Gentile, Elisa Morales, Domenico Quagliarella, Edmondo A. Minisci, Thomas Bartz-Beielstein
, Renato Tognaccini:
High-Lift Devices Topology Optimisation using Structured-Chromosome Genetic Algorithm. CEC 2020: 1-9 - [c52]Margarita Alejandra Rebolledo Coy, Frederik Rehbach, A. E. Eiben, Thomas Bartz-Beielstein
:
Parallelized bayesian optimization for problems with expensive evaluation functions. GECCO Companion 2020: 231-232 - [c51]Frederik Rehbach, Martin Zaefferer, Boris Naujoks
, Thomas Bartz-Beielstein
:
Expected improvement versus predicted value in surrogate-based optimization. GECCO 2020: 868-876 - [c50]Frederik Rehbach, Lorenzo Gentile, Thomas Bartz-Beielstein
:
Variable reduction for surrogate-based optimization. GECCO 2020: 1177-1185 - [c49]Margarita Alejandra Rebolledo Coy, Frederik Rehbach, A. E. Eiben, Thomas Bartz-Beielstein
:
Parallelized Bayesian Optimization for Expensive Robot Controller Evolution. PPSN (1) 2020: 243-256 - [p9]Jörg Stork
, Martina Friese
, Martin Zaefferer, Thomas Bartz-Beielstein
, Andreas Fischbach, Beate Breiderhoff, Boris Naujoks
, Tea Tusar:
Open Issues in Surrogate-Assisted Optimization. High-Performance Simulation-Based Optimization 2020: 225-244 - [e4]Thomas Bartz-Beielstein
, Bogdan Filipic, Peter Korosec, El-Ghazali Talbi:
High-Performance Simulation-Based Optimization. Studies in Computational Intelligence 833, Springer 2020, ISBN 978-3-030-18763-7 [contents] - [i22]Frederik Rehbach, Martin Zaefferer, Boris Naujoks, Thomas Bartz-Beielstein:
Expected Improvement versus Predicted Value in Surrogate-Based Optimization. CoRR abs/2001.02957 (2020) - [i21]Andreas Fischbach, Jan Strohschein, Andreas Bunte, Jörg Stork, Heide Faeskorn-Woyke, Natalia Moriz, Thomas Bartz-Beielstein:
CAAI - A Cognitive Architecture to Introduce Artificial Intelligence in Cyber-Physical Production Systems. CoRR abs/2003.00925 (2020) - [i20]Thomas Bartz-Beielstein
, Carola Doerr, Jakob Bossek, Sowmya Chandrasekaran, Tome Eftimov, Andreas Fischbach, Pascal Kerschke, Manuel López-Ibáñez, Katherine M. Malan, Jason H. Moore, Boris Naujoks, Patryk Orzechowski, Vanessa Volz, Markus Wagner, Thomas Weise:
Benchmarking in Optimization: Best Practice and Open Issues. CoRR abs/2007.03488 (2020) - [i19]Tom Peetz, Sebastian Vogt, Martin Zaefferer, Thomas Bartz-Beielstein
:
Simulation of an Elevator Group Control Using Generative Adversarial Networks and Related AI Tools. CoRR abs/2009.01696 (2020) - [i18]Thomas Bartz-Beielstein
, Eva Bartz, Frederik Rehbach, Olaf Mersmann
:
Optimization of High-dimensional Simulation Models Using Synthetic Data. CoRR abs/2009.02781 (2020) - [i17]Margarita Alejandra Rebolledo Coy, Sowmya Chandrasekaran, Thomas Bartz-Beielstein:
Sensor Placement for Contamination Detection in Water Distribution Systems. CoRR abs/2011.06406 (2020) - [i16]Sowmya Chandrasekaran, Margarita Rebolledo, Thomas Bartz-Beielstein:
EventDetectR - An Open-Source Event Detection System. CoRR abs/2011.09833 (2020) - [i15]Jan Strohschein, Andreas Fischbach, Andreas Bunte, Heide Faeskorn-Woyke, Natalia Moriz, Thomas Bartz-Beielstein:
Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems. CoRR abs/2012.01823 (2020) - [i14]Thomas Bartz-Beielstein
, Frederik Rehbach, Olaf Mersmann
, Eva Bartz:
Hospital Capacity Planning Using Discrete Event Simulation Under Special Consideration of the COVID-19 Pandemic. CoRR abs/2012.07188 (2020) - [i13]Margarita Rebolledo, Sowmya Chandrasekaran, Thomas Bartz-Beielstein:
Technical Report: Flushing Strategies in Drinking Water Systems. CoRR abs/2012.13574 (2020)
2010 – 2019
- 2019
- [j11]Martin Zaefferer
, Thomas Bartz-Beielstein
, Günter Rudolph
:
An empirical approach for probing the definiteness of kernels. Soft Comput. 23(21): 10939-10952 (2019) - [c48]Cristian Greco
, Lorenzo Gentile, Gianluca Filippi, Edmondo A. Minisci, Massimiliano Vasile, Thomas Bartz-Beielstein
:
Autonomous Generation of Observation Schedules for Tracking Satellites with Structured-Chromosome GA Optimisation. CEC 2019: 497-505 - [c47]Andreas Bunte
, Andreas Fischbach
, Jan Strohschein, Thomas Bartz-Beielstein
, Heide Faeskorn-Woyke, Oliver Niggemann
:
Evaluation of Cognitive Architectures for Cyber-Physical Production Systems. ETFA 2019: 729-736 - [c46]Jörg Stork
, Martin Zaefferer, Thomas Bartz-Beielstein
:
Improving NeuroEvolution Efficiency by Surrogate Model-Based Optimization with Phenotypic Distance Kernels. EvoApplications 2019: 504-519 - [c45]Frederik Rehbach, Lorenzo Gentile, Thomas Bartz-Beielstein
:
Feature selection for surrogate model-based optimization. GECCO (Companion) 2019: 399-400 - [c44]Jörg Stork
, Martin Zaefferer, Thomas Bartz-Beielstein
, A. E. Eiben:
Surrogate models for enhancing the efficiency of neuroevolution in reinforcement learning. GECCO 2019: 934-942 - [c43]Lorenzo Gentile, Cristian Greco
, Edmondo A. Minisci, Thomas Bartz-Beielstein
, Massimiliano Vasile:
Structured-chromosome GA optimisation for satellite tracking. GECCO (Companion) 2019: 1955-1963 - [i12]Jörg Stork, Martin Zaefferer, Thomas Bartz-Beielstein:
Improving NeuroEvolution Efficiency by Surrogate Model-based Optimization with Phenotypic Distance Kernels. CoRR abs/1902.03419 (2019) - [i11]Andreas Bunte, Andreas Fischbach, Jan Strohschein, Thomas Bartz-Beielstein, Heide Faeskorn-Woyke, Oliver Niggemann:
Evaluation of Cognitive Architectures for Cyber-Physical Production Systems. CoRR abs/1902.08448 (2019) - [i10]Jörg Stork, Martin Zaefferer, Thomas Bartz-Beielstein, A. E. Eiben:
Surrogate Models for Enhancing the Efficiency of Neuroevolution in Reinforcement Learning. CoRR abs/1907.09300 (2019) - [i9]Thomas Bartz-Beielstein
:
Why we need an AI-resilient society. CoRR abs/1912.08786 (2019) - 2018
- [j10]Frederik Rehbach, Jörg Stork, Thomas Bartz-Beielstein:
Bridging Theory and Practice Through Modular Graphical User Interfaces. J. Multim. Process. Technol. 9(4): 134-140 (2018) - [c42]Lorenzo Gentile
, Martin Zaefferer, Dario Giugliano, Haofeng Chen, Thomas Bartz-Beielstein
:
Surrogate assisted optimization of particle reinforced metal matrix composites. GECCO 2018: 1238-1245 - [c41]Frederik Rehbach, Martin Zaefferer, Jörg Stork
, Thomas Bartz-Beielstein
:
Comparison of parallel surrogate-assisted optimization approaches. GECCO 2018: 1348-1355 - [c40]Martin Zaefferer, Jörg Stork
, Oliver Flasch, Thomas Bartz-Beielstein
:
Linear Combination of Distance Measures for Surrogate Models in Genetic Programming. PPSN (2) 2018: 220-231 - [i8]Martin Zaefferer, Jörg Stork, Oliver Flasch, Thomas Bartz-Beielstein
:
Linear Combination of Distance Measures for Surrogate Models in Genetic Programming. CoRR abs/1807.01019 (2018) - [i7]Martin Zaefferer, Thomas Bartz-Beielstein, Günter Rudolph:
An Empirical Approach For Probing the Definiteness of Kernels. CoRR abs/1807.03555 (2018) - [i6]Jörg Stork, Martin Zaefferer, Thomas Bartz-Beielstein:
Distance-based Kernels for Surrogate Model-based Neuroevolution. CoRR abs/1807.07839 (2018) - [i5]Jörg Stork, A. E. Eiben, Thomas Bartz-Beielstein:
A new Taxonomy of Continuous Global Optimization Algorithms. CoRR abs/1808.08818 (2018) - 2017
- [j9]Thomas Bartz-Beielstein
, Martin Zaefferer
:
Model-based methods for continuous and discrete global optimization. Appl. Soft Comput. 55: 154-167 (2017) - [j8]Alexis Sardá, Subanatarajan Subbiah, Thomas Bartz-Beielstein
:
Conditional inference trees for knowledge extraction from motor health condition data. Eng. Appl. Artif. Intell. 62: 26-37 (2017) - [j7]Steffen Moritz
, Thomas Bartz-Beielstein
:
imputeTS: Time Series Missing Value Imputation in R. R J. 9(1): 207 (2017) - [c39]Jacqueline Heinerman, Jörg Stork, Margarita Alejandra Rebolledo Coy, Julien Hubert, Thomas Bartz-Beielstein, A. E. Eiben, Evert Haasdijk:
Can social learning increase learning speed, performance or both? ECAL 2017: 200-207 - [c38]Jacqueline Heinerman, Jörg Stork, Margarita Alejandra Rebolledo Coy, Julien Hubert, A. E. Eiben, Thomas Bartz-Beielstein
, Evert Haasdijk:
Is social learning more than parameter tuning? GECCO (Companion) 2017: 63-64 - [c37]Martin Zaefferer, Andreas Fischbach, Boris Naujoks
, Thomas Bartz-Beielstein
:
Simulation-based test functions for optimization algorithms. GECCO 2017: 905-912 - [i4]Thomas Bartz-Beielstein
, Lorenzo Gentile, Martin Zaefferer:
In a Nutshell: Sequential Parameter Optimization. CoRR abs/1712.04076 (2017) - 2016
- [j6]Martin Zaefferer
, Daniel Gaida, Thomas Bartz-Beielstein
:
Multi-fidelity modeling and optimization of biogas plants. Appl. Soft Comput. 48: 13-28 (2016) - [c36]Martin Zaefferer, Thomas Bartz-Beielstein
:
Efficient Global Optimization with Indefinite Kernels. PPSN 2016: 69-79 - [c35]Carola Doerr
, Nicolas Bredèche, Enrique Alba, Thomas Bartz-Beielstein
, Dimo Brockhoff, Benjamin Doerr, Gusz Eiben, Michael G. Epitropakis
, Carlos M. Fonseca
, Andreia P. Guerreiro
, Evert Haasdijk, Jacqueline Heinerman, Julien Hubert, Per Kristian Lehre, Luigi Malagò, Juan Julián Merelo Guervós
, Julian Francis Miller, Boris Naujoks
, Pietro S. Oliveto
, Stjepan Picek, Nelishia Pillay, Mike Preuss, Patricia Ryser-Welch, Giovanni Squillero, Jörg Stork
, Dirk Sudholt, Alberto Paolo Tonda, L. Darrell Whitley, Martin Zaefferer:
Tutorials at PPSN 2016. PPSN 2016: 1012-1022 - 2015
- [p8]Thomas Bartz-Beielstein
:
How to Create Generalizable Results. Handbook of Computational Intelligence 2015: 1127-1142 - [i3]Steffen Moritz
, Alexis Sardá, Thomas Bartz-Beielstein
, Martin Zaefferer, Jörg Stork:
Comparison of different Methods for Univariate Time Series Imputation in R. CoRR abs/1510.03924 (2015) - 2014
- [j5]Thomas Bartz-Beielstein
, Jürgen Branke, Jörn Mehnen
, Olaf Mersmann
:
Evolutionary Algorithms. WIREs Data Mining Knowl. Discov. 4(3): 178-195 (2014) - [c34]Martin Zaefferer, Jörg Stork
, Martina Friese, Andreas Fischbach, Boris Naujoks
, Thomas Bartz-Beielstein
:
Efficient global optimization for combinatorial problems. GECCO 2014: 871-878 - [c33]Martin Zaefferer, Beate Breiderhoff, Boris Naujoks
, Martina Friese
, Jörg Stork
, Andreas Fischbach, Oliver Flasch, Thomas Bartz-Beielstein
:
Tuning multi-objective optimization algorithms for cyclone dust separators. GECCO 2014: 1223-1230 - [c32]Martin Zaefferer, Jörg Stork
, Thomas Bartz-Beielstein
:
Distance Measures for Permutations in Combinatorial Efficient Global Optimization. PPSN 2014: 373-383 - [p7]Thomas Bartz-Beielstein
, Mike Preuss:
Experimental Analysis of Optimization Algorithms: Tuning and Beyond. Theory and Principled Methods for the Design of Metaheuristics 2014: 205-245 - [e3]Thomas Bartz-Beielstein
, Jürgen Branke, Bogdan Filipic, Jim Smith:
Parallel Problem Solving from Nature - PPSN XIII - 13th International Conference, Ljubljana, Slovenia, September 13-17, 2014. Proceedings. Lecture Notes in Computer Science 8672, Springer 2014, ISBN 978-3-319-10761-5 [contents] - 2013
- [c31]Martin Zaefferer, Thomas Bartz-Beielstein
, Boris Naujoks
, Tobias Wagner, Michael Emmerich
:
A Case Study on Multi-Criteria Optimization of an Event Detection Software under Limited Budgets. EMO 2013: 756-770 - [c30]Oliver Flasch, Martina Friese
, Katya Vladislavleva, Thomas Bartz-Beielstein
, Olaf Mersmann
, Boris Naujoks
, Jörg Stork, Martin Zaefferer:
Comparing Ensemble-Based Forecasting Methods for Smart-Metering Data. EvoApplications 2013: 172-181 - [c29]Thomas Bartz-Beielstein
, Martin Zaefferer, Boris Naujoks
:
How to create meaningful and generalizable results. GECCO (Companion) 2013: 979-1004 - 2012
- [j4]Gabriela Ochoa
, Mike Preuss
, Thomas Bartz-Beielstein
, Marc Schoenauer
:
Editorial for the Special Issue on Automated Design and Assessment of Heuristic Search Methods. Evol. Comput. 20(2): 161-163 (2012) - [j3]Patrick Koch, Bernd Bischl, Oliver Flasch, Thomas Bartz-Beielstein
, Claus Weihs, Wolfgang Konen
:
Tuning and evolution of support vector kernels. Evol. Intell. 5(3): 153-170 (2012) - [c28]Thomas Bartz-Beielstein
, Oliver Flasch, Martin Zaefferer:
Sequential parameter optimization for symbolic regression. GECCO (Companion) 2012: 495-496 - [c27]Thomas Bartz-Beielstein
, Martina Friese
, Boris Naujoks
, Martin Zaefferer:
SPOT applied to non-stochastic optimization problems: an experimental study. GECCO (Companion) 2012: 645-646 - [c26]Thomas Bartz-Beielstein
, Mike Preuß, Martin Zaefferer:
Statistical analysis of optimization algorithms with R. GECCO (Companion) 2012: 1259-1286 - [c25]Martin Zaefferer, Thomas Bartz-Beielstein
, Martina Friese
, Boris Naujoks
, Oliver Flasch:
Multi-criteria optimization for hard problems under limited budgets. GECCO (Companion) 2012: 1451-1452 - 2011
- [c24]Thomas Bartz-Beielstein
, Martina Friese
, Martin Zaefferer, Boris Naujoks
, Oliver Flasch, Wolfgang Konen
, Patrick Koch:
Noisy optimization with sequential parameter optimization and optimal computational budget allocation. GECCO (Companion) 2011: 119-120 - [c23]Thomas Bartz-Beielstein
, Mike Preuss:
Automatic and interactive tuning of algorithms. GECCO (Companion) 2011: 1361-1380 - [c22]Wolfgang Konen
, Patrick Koch, Oliver Flasch, Thomas Bartz-Beielstein
, Martina Friese, Boris Naujoks
:
Tuned data mining: a benchmark study on different tuners. GECCO 2011: 1995-2002 - 2010
- [c21]Oliver Flasch, Thomas Bartz-Beielstein
, Artur Davtyan, Patrick Koch, Wolfgang Konen
, Tosin Daniel Oyetoyan, Michael Tamutan:
Comparing SPO-tuned GP and NARX prediction models for stormwater tank fill level prediction. IEEE Congress on Evolutionary Computation 2010: 1-8 - [c20]Jörg Ziegenhirt, Thomas Bartz-Beielstein
, Oliver Flasch, Wolfgang Konen
, Martin Zaefferer:
Optimization of biogas production with computational intelligence a comparative study. IEEE Congress on Evolutionary Computation 2010: 1-8 - [c19]Oliver Flasch, Olaf Mersmann, Thomas Bartz-Beielstein
:
RGP: an open source genetic programming system for the R environment. GECCO (Companion) 2010: 2071-2072 - [c18]Thomas Bartz-Beielstein
, Mike Preuss:
Tuning and experimental analysis in evolutionary computation: what we still have wrong. GECCO (Companion) 2010: 2625-2646 - [p6]Thomas Bartz-Beielstein
, Marco Chiarandini, Luís Paquete
, Mike Preuss:
Introduction. Experimental Methods for the Analysis of Optimization Algorithms 2010: 1-13 - [p5]Thomas Bartz-Beielstein
, Mike Preuss:
The Future of Experimental Research. Experimental Methods for the Analysis of Optimization Algorithms 2010: 17-49 - [p4]Thomas Bartz-Beielstein
, Christian Lasarczyk, Mike Preuss:
The Sequential Parameter Optimization Toolbox. Experimental Methods for the Analysis of Optimization Algorithms 2010: 337-362 - [p3]Frank Hutter, Thomas Bartz-Beielstein
, Holger H. Hoos, Kevin Leyton-Brown
, Kevin P. Murphy:
Sequential Model-Based Parameter Optimization: an Experimental Investigation of Automated and Interactive Approaches. Experimental Methods for the Analysis of Optimization Algorithms 2010: 363-414 - [e2]Thomas Bartz-Beielstein
, Marco Chiarandini, Luís Paquete
, Mike Preuss:
Experimental Methods for the Analysis of Optimization Algorithms. Springer 2010, ISBN 978-3-642-02537-2 [contents] - [i2]Thomas Bartz-Beielstein
:
SPOT: An R Package For Automatic and Interactive Tuning of Optimization Algorithms by Sequential Parameter Optimization. CoRR abs/1006.4645 (2010)
2000 – 2009
- 2009
- [j2]Wolfgang Konen
, Tobias Zimmer, Thomas Bartz-Beielstein
:
Optimierte Modellierung von Füllständen in Regenüberlaufbecken mittels CI-basierter Parameterselektion (Optimized Modelling of Fill Levels in Stormwater Tanks Using CI-based Parameter Selection Schemes). Autom. 57(3): 155-166 (2009) - [c17]Wolfgang Konen, Thomas Bartz-Beielstein
:
Reinforcement learning for games: failures and successes. GECCO (Companion) 2009: 2641-2648 - [c16]Thomas Bartz-Beielstein
, Mike Preuss:
the future of experimental research. GECCO (Companion) 2009: 3185-3226 - [i1]Thomas Bartz-Beielstein:
Sequential Parameter Optimization. Sampling-based Optimization in the Presence of Uncertainty 2009 - 2008
- [j1]Thomas Bartz-Beielstein
:
How experimental algorithmics can benefit from Mayo's extensions to Neyman-Pearson theory of testing. Synth. 163(3): 385-396 (2008) - [c15]Thomas Bartz-Beielstein
, Mike Preuss:
Experimental research in evolutionary computation. GECCO (Companion) 2008: 2517-2534 - [c14]