Stop the war!
Остановите войну!
for scientists:
default search action
Gagan Agrawal
Person information
- affiliation: Ohio State University, Columbus, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c280]Wei Niu, Gagan Agrawal, Bin Ren:
SoD2: Statically Optimizing Dynamic Deep Neural Network Execution. ASPLOS (1) 2024: 386-400 - [c279]Wei Niu, Md. Musfiqur Rahman Sanim, Zhihao Shu, Jiexiong Guan, Xipeng Shen, Miao Yin, Gagan Agrawal, Bin Ren:
SmartMem: Layout Transformation Elimination and Adaptation for Efficient DNN Execution on Mobile. ASPLOS (3) 2024: 916-931 - [c278]Gagan Agrawal, Alba Cristina Melo:
Message from the 2024 General Co-chairs. IPDPS (Workshops) 2024: xxviii-xxix - [c277]Mahdieh Heidaripour, Ladan Kian, Maryam Rezapour, Mark Holcomb, Benjamin Fuller, Gagan Agrawal, Hoda Maleki:
Organizing Records for Retrieval in Multi-Dimensional Range Searchable Encryption. SECRYPT 2024: 459-466 - [i11]Wei Niu, Gagan Agrawal, Bin Ren:
SoD2: Statically Optimizing Dynamic Deep Neural Network. CoRR abs/2403.00176 (2024) - [i10]Wei Niu, Md. Musfiqur Rahman Sanim, Zhihao Shu, Jiexiong Guan, Xipeng Shen, Miao Yin, Gagan Agrawal, Bin Ren:
SmartMem: Layout Transformation Elimination and Adaptation for Efficient DNN Execution on Mobile. CoRR abs/2404.13528 (2024) - [i9]Mahdieh Heidaripour, Ladan Kian, Maryam Rezapour, Mark Holcomb, Benjamin Fuller, Gagan Agrawal, Hoda Maleki:
Organizing Records for Retrieval in Multi-Dimensional Range Searchable Encryption. IACR Cryptol. ePrint Arch. 2024: 635 (2024) - 2023
- [c276]Xiang Li, Gagan Agrawal, Ruoming Jin, Rajiv Ramnath:
Scalable Deep Metric Learning on Attributed Graphs. CSoNet 2023: 385-397 - [c275]Braxton Bolt, Hoda Maleki, Gagan Agrawal, Jeffrey D. Morris, Khan Farabi:
SecFob: A Remote Keyless Entry Security Solution. ISC2 2023: 1-7 - [c274]Yang Xia, Peng Jiang, Gagan Agrawal, Rajiv Ramnath:
End-to-End LU Factorization of Large Matrices on GPUs. PPoPP 2023: 288-300 - [c273]Asma Jodeiri Akbarfam, Mahdieh Heidaripour, Hoda Maleki, Gokila Dorai, Gagan Agrawal:
ForensiBlock: A Provenance-Driven Blockchain Framework for Data Forensics and Auditability. TPS-ISA 2023: 136-145 - [i8]Asma Jodeiri Akbarfam, Mahdieh Heidaripour, Hoda Maleki, Gokila Dorai, Gagan Agrawal:
ForensiBlock: A Provenance-Driven Blockchain Framework for Data Forensics and Auditability. CoRR abs/2308.03927 (2023) - 2022
- [c272]Haoyuan Xing, Gagan Agrawal, Rajiv Ramnath:
GPU Adaptive In-situ Parallel Analytics (GAP). PACT 2022: 467-480 - [c271]Xiang Li, Dong Li, Ruoming Jin, Rajiv Ramnath, Gagan Agrawal:
Deep Graph Clustering with Random-walk based Scalable Learning. ASONAM 2022: 88-95 - [c270]Md Hasan, Hoda Maleki, Gagan Agrawal:
Securing Pseudonym Schemes for Vehicular Privacy. IEEE Big Data 2022: 6647-6649 - [c269]Yang Xia, Peng Jiang, Gagan Agrawal, Rajiv Ramnath:
Scaling and Selecting GPU Methods for All Pairs Shortest Paths (APSP) Computations. IPDPS 2022: 190-200 - [c268]Wei Niu, Jiexiong Guan, Xipeng Shen, Yanzhi Wang, Gagan Agrawal, Bin Ren:
GCD2: A Globally Optimizing Compiler for Mapping DNNs to Mobile DSPs. MICRO 2022: 512-529 - 2021
- [c267]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Constraint-embedded paraphrase generation for commercial tweets. ASONAM 2021: 369-376 - [c266]Dane Troyer, Justin Henry, Hoda Maleki, Gokila Dorai, Bethany Sumner, Gagan Agrawal, Jon Ingram:
Privacy-Preserving Framework to Facilitate Shared Data Access for Wearable Devices. IEEE BigData 2021: 2583-2592 - [c265]Jia Guo, Radu Teodorescu, Gagan Agrawal:
Fused DSConv: Optimizing Sparse CNN Inference for Execution on Edge Devices. CCGRID 2021: 545-554 - [c264]Xiang Li, Ruoming Jin, Rajiv Ramnath, Gagan Agrawal:
A Framework for Accelerating Graph Convolutional Networks on Massive Datasets. CSoNet 2021: 79-92 - [c263]Xiang Li, Gagan Agrawal:
Shrinking Sample Search Algorithm for Automatic Tuning of GPU Kernels. HiPC 2021: 262-271 - [c262]Shuangsheng Lou, Gagan Agrawal:
A Programming API Implementation for Secure Data Analytics Applications with Homomorphic Encryption on GPUs. HiPC 2021: 418-423 - [c261]Jia Guo, Radu Teodorescu, Gagan Agrawal:
A Fused Inference Design for Pattern-Based Sparse CNN on Edge Devices. HiPC 2021: 424-429 - [c260]Shuangsheng Lou, Gagan Agrawal:
Mapping IoT Applications on the Edge to Cloud Continuum with a Filter Stream Model. ICFEC 2021: 61-65 - [c259]Yang Xia, Peng Jiang, Gagan Agrawal, Rajiv Ramnath:
Scaling Sparse Matrix Multiplication on CPU-GPU Nodes. IPDPS 2021: 392-401 - [c258]Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, Bin Ren:
DNNFusion: accelerating deep neural networks execution with advanced operator fusion. PLDI 2021: 883-898 - [c257]Gangyi Zhu, Gagan Agrawal:
Sampling-based Sparse Format Selection on GPUs. SBAC-PAD 2021: 198-208 - [c256]Shuangsheng Lou, Nisha Panwar, Gagan Agrawal:
Integrity Verification for Streaming IoT Applications with a Minimalist Logging Scheme. SMARTCOMP 2021: 197-202 - [i7]Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, Bin Ren:
DNNFusion: Accelerating Deep Neural Networks Execution with Advanced Operator Fusion. CoRR abs/2108.13342 (2021) - [i6]Xiang Li, Dong Li, Ruoming Jin, Gagan Agrawal, Rajiv Ramnath:
Scalable Deep Graph Clustering with Random-walk based Self-supervised Learning. CoRR abs/2112.15530 (2021) - 2020
- [j35]Roee Ebenstein, Gagan Agrawal:
DistriPlan: an optimized join execution framework for geo-distributed scientific data. Distributed Parallel Databases 38(1): 127-152 (2020) - [j34]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Tweets can tell: activity recognition using hybrid gated recurrent neural networks. Soc. Netw. Anal. Min. 10(1): 16 (2020) - [j33]Peng Jiang, Yang Xia, Gagan Agrawal:
Combining SIMD and Many/Multi-core Parallelism for Finite-state Machines with Enumerative Speculation. ACM Trans. Parallel Comput. 7(3): 15:1-15:26 (2020) - [c255]Jia Guo, Radu Teodorescu, Gagan Agrawal:
A Pattern-Based API for Mapping Applications to a Hierarchy of Multi-Core Devices. CCGRID 2020: 11-20 - [c254]Ruoming Jin, Zhen Peng, Wendell Wu, Feodor F. Dragan, Gagan Agrawal, Bin Ren:
Parallelizing pruned landmark labeling: dealing with dependencies in graph algorithms. ICS 2020: 11:1-11:13 - [c253]Jia Guo, Gagan Agrawal:
Smart Streaming: A High-Throughput Fault-tolerant Online Processing System. IPDPS Workshops 2020: 396-405 - [c252]Yang Xia, Peng Jiang, Gagan Agrawal:
Scaling out speculative execution of finite-state machines with parallel merge. PPoPP 2020: 160-172 - [c251]Peng Jiang, Changwan Hong, Gagan Agrawal:
A novel data transformation and execution strategy for accelerating sparse matrix multiplication on GPUs. PPoPP 2020: 376-388 - [c250]Haoyuan Xing, Gagan Agrawal, Rajiv Ramnath:
MoHA: a composable system for efficient in-situ analytics on heterogeneous HPC systems. SC 2020: 82 - [i5]Peng Jiang, Gagan Agrawal:
Adaptive Periodic Averaging: A Practical Approach to Reducing Communication in Distributed Learning. CoRR abs/2007.06134 (2020)
2010 – 2019
- 2019
- [c249]Gangyi Zhu, Peng Jiang, Gagan Agrawal:
A Methodology for Characterizing Sparse Datasets and Its Application to SIMD Performance Prediction. PACT 2019: 445-456 - [c248]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Tweets can tell: activity recognition using hybrid long short-term memory model. ASONAM 2019: 164-167 - [c247]Yang Xia, Peng Jiang, Gagan Agrawal:
Enabling prefix sum parallelism pattern for recurrences with principled function reconstruction. CC 2019: 17-28 - [c246]Peng Jiang, Gagan Agrawal:
Accelerating distributed stochastic gradient descent with adaptive periodic parameter averaging: poster. PPoPP 2019: 403-404 - [c245]Haoyuan Xing, Gagan Agrawal:
Accelerating array joining with integrated value-index. SSDBM 2019: 145-156 - [i4]Ruoming Jin, Zhen Peng, Wendell Wu, Feodor F. Dragan, Gagan Agrawal, Bin Ren:
Pruned Landmark Labeling Meets Vertex Centric Computation: A Surprisingly Happy Marriage! CoRR abs/1906.12018 (2019) - [i3]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Tweets Can Tell: Activity Recognition using Hybrid Long Short-Term Memory Model. CoRR abs/1908.02551 (2019) - [i2]Renhao Cui, Gagan Agrawal, Rajiv Ramnath:
Towards Successful Social Media Advertising: Predicting the Influence of Commercial Tweets. CoRR abs/1910.12446 (2019) - 2018
- [c244]Peng Jiang, Linchuan Chen, Gagan Agrawal:
Revealing parallel scans and reductions in recurrences through function reconstruction. PACT 2018: 10:1-10:13 - [c243]Peng Jiang, Gagan Agrawal:
Conflict-free vectorization of associative irregular applications with recent SIMD architectural advances. CGO 2018: 175-187 - [c242]Roee Ebenstein, Gagan Agrawal, Jiali Wang, Joshua M. Boley, Rajkumar Kettimuthu:
FDQ: Advance Analytics Over Real Scientific Array Datasets. eScience 2018: 453-463 - [c241]Muhammed Emin Ozturk, Marissa Renardy, Yukun Li, Gagan Agrawal, Ching-Shan Chou:
A Novel Approach for Handling Soft Error in Conjugate Gradients. HiPC 2018: 193-202 - [c240]Gangyi Zhu, Gagan Agrawal:
A Performance Prediction Framework for Irregular Applications. HiPC 2018: 304-313 - [c239]Jia Guo, Gagan Agrawal:
Achieving Performance and Programmability for MapReduce(-Like) Frameworks. HiPC 2018: 314-323 - [c238]Peng Jiang, Gagan Agrawal:
A Linear Speedup Analysis of Distributed Deep Learning with Sparse and Quantized Communication. NeurIPS 2018: 2530-2541 - [c237]Peng Jiang, Gagan Agrawal:
Revealing parallel scans and reductions in sequential loops through function reconstruction. PPoPP 2018: 395-396 - [c236]Haoyuan Xing, Gagan Agrawal:
COMPASS: compact array storage with value index. SSDBM 2018: 7:1-7:12 - 2017
- [c235]Jiaqi Liu, Gagan Agrawal:
Supporting Fault-Tolerance in Presence of In-Situ Analytics. CCGrid 2017: 304-313 - [c234]Peng Jiang, Gagan Agrawal:
Efficient SIMD and MIMD parallelization of hash-based aggregation by conflict mitigation. ICS 2017: 24:1-24:11 - [c233]Mücahid Kutlu, Gagan Agrawal, James S. Blachly:
Par-eXpress: A Tool for Analysis of Sequencing Experiments With Ambiguous Assignment of Fragments in Parallel. IPDPS Workshops 2017: 303-310 - [c232]Peng Jiang, Gagan Agrawal:
Combining SIMD and Many/Multi-core Parallelism for Finite State Machines with Enumerative Speculation. PPoPP 2017: 179-191 - [c231]Roee Ebenstein, Gagan Agrawal:
DistriPlan: An Optimized Join Execution Framework for Geo-Distributed Scientific Data. SSDBM 2017: 25:1-25:6 - 2016
- [j32]Mehmet Can Kurt, Sriram Krishnamoorthy, Gagan Agrawal, Bin Ren:
User-Assisted Store Recycling for Dynamic Task Graph Schedulers. ACM Trans. Archit. Code Optim. 13(4): 55:1-55:24 (2016) - [c230]Linchuan Chen, Peng Jiang, Gagan Agrawal:
Exploiting recent SIMD architectural advances for irregular applications. CGO 2016: 47-58 - [c229]David Siegal, Jia Guo, Gagan Agrawal:
Smart-MLlib: A High-Performance Machine-Learning Library. CLUSTER 2016: 336-345 - [c228]Jiaqi Liu, Gagan Agrawal:
Soft Error Detection for Iterative Applications Using Offline Training. HiPC 2016: 2-11 - [c227]Sameh Shohdy, Abhinav Vishnu, Gagan Agrawal:
Fault Tolerant Frequent Pattern Mining. HiPC 2016: 12-21 - [c226]Renhao Cui, Gagan Agrawal, Rajiv Ramnath, Vinh Ngoc Khuc:
Ensemble of Heterogeneous Classifiers for Improving Automated Tweet Classification. ICDM Workshops 2016: 1045-1052 - [c225]Sameh Shohdy, Abhinav Vishnu, Gagan Agrawal:
Fault Tolerant Support Vector Machines. ICPP 2016: 598-607 - [c224]Peng Jiang, Linchuan Chen, Gagan Agrawal:
Reusing Data Reorganization for Efficient SIMD Parallelization of Adaptive Irregular Applications. ICS 2016: 16:1-16:10 - [c223]Rajkumar Kettimuthu, Gagan Agrawal, P. Sadayappan, Ian T. Foster:
Differentiated Scheduling of Response-Critical and Best-Effort Wide-Area Data Transfers. IPDPS 2016: 1113-1122 - [c222]Mehmet Can Kurt, Bin Ren, Sriram Krishnamoorthy, Gagan Agrawal:
User-assisted storage reuse determination for dynamic task graphs. PPoPP 2016: 54:1-54:2 - [i1]Sameh Shohdy, Abhinav Vishnu, Gagan Agrawal:
Fault Tolerant Frequent Pattern Mining. CoRR abs/1610.05116 (2016) - 2015
- [c221]Roee Ebenstein, Gagan Agrawal:
DSDQuery DSI - Querying scientific data repositories with structured operators. IEEE BigData 2015: 485-492 - [c220]Manirupa Das, Renhao Cui, David R. Campbell, Gagan Agrawal, Rajiv Ramnath:
Towards methods for systematic research on big data. IEEE BigData 2015: 2072-2081 - [c219]Jiaqi Liu, Mehmet Can Kurt, Gagan Agrawal:
A Practical Approach for Handling Soft Errors in Iterative Applications. CLUSTER 2015: 158-161 - [c218]Mücahid Kutlu, Gagan Agrawal:
RE-PAGE: Domain-Specific REplication and PArallel Processing of GEnomic Data. CLUSTER 2015: 332-341 - [c217]Tekin Bicer, Doga Gürsoy, Rajkumar Kettimuthu, Francesco De Carlo, Gagan Agrawal, Ian T. Foster:
Rapid Tomographic Image Reconstruction via Large-Scale Parallelization. Euro-Par 2015: 289-302 - [c216]Sameh Shohdy, Yu Su, Gagan Agrawal:
Load Balancing and Accelerating Parallel Spatial Join Operations Using Bitmap Indexing. HiPC 2015: 396-405 - [c215]Jiaqi Liu, Gagan Agrawal:
Algorithm Level Fault Tolerance for Molecular Dynamic Applications. HiPC 2015: 406-415 - [c214]Yu Su, Yi Wang, Gagan Agrawal:
In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps. HPDC 2015: 61-72 - [c213]Mücahid Kutlu, Gagan Agrawal:
GEM: A Framework for Developing Shared-Memory Parallel Genomic Applications on Memory Constrained Architectures. ICPP 2015: 829-838 - [c212]Linchuan Chen, Xin Huo, Gagan Agrawal:
A Pattern Specification and Optimizations Framework for Accelerating Scientific Computations on Heterogeneous Clusters. IPDPS 2015: 591-600 - [c211]Linchuan Chen, Xin Huo, Bin Ren, Surabhi Jain, Gagan Agrawal:
Efficient and Simplified Parallel Graph Processing over CPU and MIC. IPDPS 2015: 819-828 - [c210]Mehmet Can Kurt, Bin Ren, Gagan Agrawal:
Low-Overhead Fault-Tolerance Support Using DISC Programming Model. LCPC 2015: 20-36 - [c209]Bin Ren, Nishkam Ravi, Yi Yang, Min Feng, Gagan Agrawal, Srimat T. Chakradhar:
Automatic and Efficient Data Host-Device Communication for Many-Core Coprocessors. LCPC 2015: 173-190 - [c208]Yi Wang, Linchuan Chen, Gagan Agrawal:
Supporting online analytics with user-defined estimation and early termination in a MapReduce-like framework. DISCS@SC 2015: 8:1-8:8 - [c207]Rajkumar Kettimuthu, Gayane Vardoyan, Gagan Agrawal, P. Sadayappan, Ian T. Foster:
An elegant sufficiency: load-aware differentiated scheduling of data transfers. SC 2015: 46:1-46:12 - [c206]Yi Wang, Gagan Agrawal, Tekin Bicer, Wei Jiang:
Smart: a MapReduce-like framework for in-situ scientific analytics. SC 2015: 51:1-51:12 - [c205]Yi Wang, Yu Su, Gagan Agrawal:
A novel approach for approximate aggregations over arrays. SSDBM 2015: 4:1-4:12 - [c204]Gangyi Zhu, Yi Wang, Gagan Agrawal:
SciCSM: novel contrast set mining over scientific datasets using bitmap indices. SSDBM 2015: 38:1-38:6 - 2014
- [j31]Yu Su, Gagan Agrawal, Jonathan Woodring, Kary L. Myers, Joanne Wendelberger, James P. Ahrens:
Effective and efficient data sampling using bitmap indices. Clust. Comput. 17(4): 1081-1100 (2014) - [j30]Bin Ren, Todd Mytkowicz, Gagan Agrawal:
A Portable Optimization Engine for Accelerating Irregular Data-Traversal Applications on SIMD Architectures. ACM Trans. Archit. Code Optim. 11(2): 16:1-16:31 (2014) - [j29]Mai Zheng, Vignesh T. Ravi, Feng Qin, Gagan Agrawal:
GMRace: Detecting Data Races in GPU Programs via a Low-Overhead Scheme. IEEE Trans. Parallel Distributed Syst. 25(1): 104-115 (2014) - [c203]Tekin Bicer, Jian Yin, Gagan Agrawal:
Improving I/O Throughput of Scientific Applications Using Transparent Parallel Compression. CCGRID 2014: 1-10 - [c202]Rajkumar Kettimuthu, Gayane Vardoyan, Gagan Agrawal, P. Sadayappan:
Modeling and Optimizing Large-Scale Wide-Area Data Transfers. CCGRID 2014: 196-205 - [c201]Mücahid Kutlu, Gagan Agrawal:
Cluster-Based SNP Calling on Large-Scale Genome Sequencing Data. CCGRID 2014: 455-464 - [c200]Yu Su, Gagan Agrawal, Jonathan Woodring, Ayan Biswas, Han-Wei Shen:
Supporting correlation analysis on scientific datasets in parallel and distributed settings. HPDC 2014: 191-202 - [c199]Bin Ren, Nishkam Ravi, Yi Yang, Min Feng, Gagan Agrawal, Srimat T. Chakradhar:
Automating and optimizing data transfers for many-core coprocessors. ICS 2014: 177 - [c198]Xin Huo, Bin Ren, Gagan Agrawal:
A programming system for xeon phis with runtime SIMD parallelization. ICS 2014: 283-292 - [c197]Linchuan Chen, Xin Huo, Gagan Agrawal:
Scheduling Methods for Accelerating Applications on Architectures with Heterogeneous Cores. IPDPS Workshops 2014: 48-57 - [c196]Mücahid Kutlu, Gagan Agrawal:
PAGE: A Framework for Easy PArallelization of GEnomic Applications. IPDPS 2014: 72-81 - [c195]Yi Wang, Gagan Agrawal, Hatice Gulcin Ozer, Kun Huang:
Removing Sequential Bottlenecks in Analysis of Next-Generation Sequencing Data. IPDPS Workshops 2014: 508-517 - [c194]Mehmet Can Kurt, Sriram Krishnamoorthy, Kunal Agrawal, Gagan Agrawal:
Fault-Tolerant Dynamic Task Graph Scheduling. SC 2014: 719-730 - [c193]Mehmet Can Kurt, Gagan Agrawal:
DISC: A Domain-Interaction Based Programming Model with Support for Heterogeneous Execution. SC 2014: 869-880 - [c192]Yi Wang, Arnab Nandi, Gagan Agrawal:
SAGA: array storage as a DB with support for structural aggregations. SSDBM 2014: 9:1-9:12 - [p2]Victor E. Lee, Ruoming Jin, Gagan Agrawal:
Frequent Pattern Mining in Data Streams. Frequent Pattern Mining 2014: 199-224 - 2013
- [j28]Wenjing Ma, Sriram Krishnamoorthy, Oreste Villa, Karol Kowalski, Gagan Agrawal:
Optimizing tensor contraction expressions for hybrid CPU-GPU execution. Clust. Comput. 16(1): 131-155 (2013) - [j27]Vignesh T. Ravi, Michela Becchi, Wei Jiang, Gagan Agrawal, Srimat T. Chakradhar:
Scheduling concurrent applications on a cluster of CPU-GPU nodes. Future Gener. Comput. Syst. 29(8): 2262-2271 (2013) - [j26]David Chiu, Gagan Agrawal:
Cost and Accuracy Aware Scientific Workflow Composition for Service-Oriented Environments. IEEE Trans. Serv. Comput. 6(4): 470-483 (2013) - [c191]Yi Wang, Yu Su, Gagan Agrawal:
Supporting a Light-Weight Data Management Layer over HDF5. CCGRID 2013: 335-342 - [c190]Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz, Tomi Poutanen, Wolfram Schulte:
SIMD parallelization of applications that traverse irregular data structures. CGO 2013: 20:1-20:10 - [c189]Yu Su, Gagan Agrawal, Jonathan Woodring, Kary L. Myers, Joanne Wendelberger, James P. Ahrens:
Taming massive distributed datasets: data sampling using bitmap indices. HPDC 2013: 13-24 - [c188]Xin Huo, Sriram Krishnamoorthy, Gagan Agrawal:
Efficient scheduling of recursive control flow on GPUs. ICS 2013: 409-420 - [c187]Tekin Bicer, Jian Yin, David Chiu, Gagan Agrawal, Karen Schuchardt:
Integrating Online Compression to Accelerate Large-Scale Data Analytics Applications. IPDPS 2013: 1205-1216 - [c186]