


Остановите войну!
for scientists:


default search action
Kian Hsiang Low
Bryan Kian Hsiang Low
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2023
- [j7]Yizhou Chen, Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low
, Teck-Hua Ho:
Recursive reasoning-based training-time adversarial machine learning. Artif. Intell. 315: 103837 (2023) - [c95]Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Cheston Tan, Bryan Kian Hsiang Low:
FedHQL: Federated Heterogeneous Q-Learning. AAMAS 2023: 2810-2812 - [i58]Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Cheston Tan, Bryan Kian Hsiang Low, Roger Wattenhofer:
FedHQL: Federated Heterogeneous Q-Learning. CoRR abs/2301.11135 (2023) - [i57]Tiedong Liu, Bryan Kian Hsiang Low:
Goat: Fine-tuned LLaMA Outperforms GPT-4 on Arithmetic Tasks. CoRR abs/2305.14201 (2023) - 2022
- [c94]Sebastian Shenghong Tay, Xinyi Xu, Chuan Sheng Foo, Bryan Kian Hsiang Low:
Incentivizing Collaboration in Machine Learning via Synthetic Data Rewards. AAAI 2022: 9448-9456 - [c93]Yizhou Chen, Shizhuo Zhang, Bryan Kian Hsiang Low:
Near-Optimal Task Selection for Meta-Learning with Mutual Information and Online Variational Bayesian Unlearning. AISTATS 2022: 9091-9113 - [c92]Quoc Phong Nguyen, Ryutaro Oikawa, Dinil Mon Divakaran, Mun Choon Chan, Bryan Kian Hsiang Low:
Markov Chain Monte Carlo-Based Machine Unlearning: Unlearning What Needs to be Forgotten. AsiaCCS 2022: 351-363 - [c91]Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, Bryan Kian Hsiang Low:
NASI: Label- and Data-agnostic Neural Architecture Search at Initialization. ICLR 2022 - [c90]Lucas Agussurja, Xinyi Xu, Bryan Kian Hsiang Low:
On the Convergence of the Shapley Value in Parametric Bayesian Learning Games. ICML 2022: 180-196 - [c89]Sebastian Shenghong Tay, Chuan Sheng Foo, Urano Daisuke, Richalynn Leong, Bryan Kian Hsiang Low:
Efficient Distributionally Robust Bayesian Optimization with Worst-case Sensitivity. ICML 2022: 21180-21204 - [c88]Arun Verma, Zhongxiang Dai, Bryan Kian Hsiang Low:
Bayesian Optimization under Stochastic Delayed Feedback. ICML 2022: 22145-22167 - [c87]Zhaoxuan Wu, Yao Shu, Bryan Kian Hsiang Low:
DAVINZ: Data Valuation using Deep Neural Networks at Initialization. ICML 2022: 24150-24176 - [c86]Rachael Hwee Ling Sim, Xinyi Xu, Bryan Kian Hsiang Low:
Data Valuation in Machine Learning: "Ingredients", Strategies, and Open Challenges. IJCAI 2022: 5607-5614 - [c85]Zhongxiang Dai, Yao Shu, Bryan Kian Hsiang Low, Patrick Jaillet:
Sample-Then-Optimize Batch Neural Thompson Sampling. NeurIPS 2022 - [c84]Quoc Phong Nguyen, Bryan Kian Hsiang Low, Patrick Jaillet:
Trade-off between Payoff and Model Rewards in Shapley-Fair Collaborative Machine Learning. NeurIPS 2022 - [c83]Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, Bryan Kian Hsiang Low:
Unifying and Boosting Gradient-Based Training-Free Neural Architecture Search. NeurIPS 2022 - [c82]Zhongxiang Dai, Yizhou Chen, Haibin Yu, Bryan Kian Hsiang Low, Patrick Jaillet:
On provably robust meta-Bayesian optimization. UAI 2022: 475-485 - [c81]Yao Shu, Yizhou Chen, Zhongxiang Dai, Bryan Kian Hsiang Low:
Neural ensemble search via Bayesian sampling. UAI 2022: 1803-1812 - [i56]Yao Shu, Zhongxiang Dai, Zhaoxuan Wu, Bryan Kian Hsiang Low:
Unifying and Boosting Gradient-Based Training-Free Neural Architecture Search. CoRR abs/2201.09785 (2022) - [i55]Quoc Phong Nguyen, Ryutaro Oikawa, Dinil Mon Divakaran, Mun Choon Chan, Bryan Kian Hsiang Low:
Markov Chain Monte Carlo-Based Machine Unlearning: Unlearning What Needs to be Forgotten. CoRR abs/2202.13585 (2022) - [i54]Quoc Phong Nguyen, Bryan Kian Hsiang Low, Patrick Jaillet:
Rectified Max-Value Entropy Search for Bayesian Optimization. CoRR abs/2202.13597 (2022) - [i53]Shouri Hu, Haowei Wang, Zhongxiang Dai, Bryan Kian Hsiang Low, Szu Hui Ng:
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization. CoRR abs/2205.04901 (2022) - [i52]Lucas Agussurja, Xinyi Xu, Bryan Kian Hsiang Low:
On the Convergence of the Shapley Value in Parametric Bayesian Learning Games. CoRR abs/2205.07428 (2022) - [i51]Zhongxiang Dai, Yao Shu, Arun Verma, Flint Xiaofeng Fan, Bryan Kian Hsiang Low, Patrick Jaillet:
Federated Neural Bandit. CoRR abs/2205.14309 (2022) - [i50]Zhongxiang Dai, Yizhou Chen, Haibin Yu, Bryan Kian Hsiang Low, Patrick Jaillet:
On Provably Robust Meta-Bayesian Optimization. CoRR abs/2206.06872 (2022) - [i49]Arun Verma, Zhongxiang Dai, Bryan Kian Hsiang Low:
Bayesian Optimization under Stochastic Delayed Feedback. CoRR abs/2206.09341 (2022) - [i48]Zhongxiang Dai, Yao Shu, Bryan Kian Hsiang Low, Patrick Jaillet:
Sample-Then-Optimize Batch Neural Thompson Sampling. CoRR abs/2210.06850 (2022) - [i47]Zijian Zhou, Xinyi Xu, Rachael Hwee Ling Sim, Chuan Sheng Foo, Kian Hsiang Low:
Probably Approximate Shapley Fairness with Applications in Machine Learning. CoRR abs/2212.00630 (2022) - 2021
- [c80]Quoc Phong Nguyen, Bryan Kian Hsiang Low, Patrick Jaillet:
An Information-Theoretic Framework for Unifying Active Learning Problems. AAAI 2021: 9126-9134 - [c79]Quoc Phong Nguyen, Sebastian Tay, Bryan Kian Hsiang Low, Patrick Jaillet:
Top-k Ranking Bayesian Optimization. AAAI 2021: 9135-9143 - [c78]Thanh Chi Lam, Trong Nghia Hoang, Bryan Kian Hsiang Low, Patrick Jaillet:
Model Fusion for Personalized Learning. ICML 2021: 5948-5958 - [c77]Quoc Phong Nguyen, Zhongxiang Dai, Bryan Kian Hsiang Low, Patrick Jaillet:
Value-at-Risk Optimization with Gaussian Processes. ICML 2021: 8063-8072 - [c76]Rachael Hwee Ling Sim, Yehong Zhang, Bryan Kian Hsiang Low, Patrick Jaillet:
Collaborative Bayesian Optimization with Fair Regret. ICML 2021: 9691-9701 - [c75]Haibin Yu, Dapeng Liu, Bryan Kian Hsiang Low, Patrick Jaillet:
Convolutional Normalizing Flows for Deep Gaussian Processes. IJCNN 2021: 1-6 - [c74]Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, Bryan Kian Hsiang Low:
Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee. NeurIPS 2021: 1007-1021 - [c73]Quoc Phong Nguyen, Zhongxiang Dai, Bryan Kian Hsiang Low, Patrick Jaillet:
Optimizing Conditional Value-At-Risk of Black-Box Functions. NeurIPS 2021: 4170-4180 - [c72]Zhongxiang Dai, Bryan Kian Hsiang Low, Patrick Jaillet:
Differentially Private Federated Bayesian Optimization with Distributed Exploration. NeurIPS 2021: 9125-9139 - [c71]Xinyi Xu, Zhaoxuan Wu, Chuan Sheng Foo, Bryan Kian Hsiang Low:
Validation Free and Replication Robust Volume-based Data Valuation. NeurIPS 2021: 10837-10848 - [c70]Xinyi Xu, Lingjuan Lyu, Xingjun Ma, Chenglin Miao, Chuan Sheng Foo, Bryan Kian Hsiang Low:
Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning. NeurIPS 2021: 16104-16117 - [c69]Quoc Phong Nguyen, Bryan Kian Hsiang Low, Patrick Jaillet:
Learning to learn with Gaussian processes. UAI 2021: 1466-1475 - [c68]Quoc Phong Nguyen, Zhaoxuan Wu, Bryan Kian Hsiang Low, Patrick Jaillet:
Trusted-maximizers entropy search for efficient Bayesian optimization. UAI 2021: 1486-1495 - [i46]Haibin Yu, Dapeng Liu, Bryan Kian Hsiang Low, Patrick Jaillet:
Convolutional Normalizing Flows for Deep Gaussian Processes. CoRR abs/2104.08472 (2021) - [i45]Quoc Phong Nguyen, Zhongxiang Dai, Bryan Kian Hsiang Low, Patrick Jaillet:
Value-at-Risk Optimization with Gaussian Processes. CoRR abs/2105.06126 (2021) - [i44]Quoc Phong Nguyen, Zhaoxuan Wu, Bryan Kian Hsiang Low, Patrick Jaillet:
Trusted-Maximizers Entropy Search for Efficient Bayesian Optimization. CoRR abs/2107.14465 (2021) - [i43]Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, Bryan Kian Hsiang Low:
NASI: Label- and Data-agnostic Neural Architecture Search at Initialization. CoRR abs/2109.00817 (2021) - [i42]Yao Shu, Yizhou Chen, Zhongxiang Dai, Bryan Kian Hsiang Low:
Going Beyond Neural Architecture Search with Sampling-based Neural Ensemble Search. CoRR abs/2109.02533 (2021) - [i41]Flint Xiaofeng Fan, Yining Ma, Zhongxiang Dai, Wei Jing, Cheston Tan, Bryan Kian Hsiang Low:
Fault-Tolerant Federated Reinforcement Learning with Theoretical Guarantee. CoRR abs/2110.14074 (2021) - [i40]Zhongxiang Dai, Bryan Kian Hsiang Low, Patrick Jaillet:
Differentially Private Federated Bayesian Optimization with Distributed Exploration. CoRR abs/2110.14153 (2021) - [i39]Sebastian Shenghong Tay, Xinyi Xu, Chuan Sheng Foo, Bryan Kian Hsiang Low:
Incentivizing Collaboration in Machine Learning via Synthetic Data Rewards. CoRR abs/2112.09327 (2021) - 2020
- [j6]Ruofei Ouyang, Bryan Kian Hsiang Low:
Gaussian process decentralized data fusion meets transfer learning in large-scale distributed cooperative perception. Auton. Robots 44(3-4): 359-376 (2020) - [c67]Tong Teng, Jie Chen, Yehong Zhang, Bryan Kian Hsiang Low:
Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression. AAAI 2020: 5997-6004 - [c66]Dmitrii Kharkovskii, Chun Kai Ling, Bryan Kian Hsiang Low:
Nonmyopic Gaussian Process Optimization with Macro-Actions. AISTATS 2020: 4593-4604 - [c65]Cha Hwan Song, Pravein Govindan Kannan
, Bryan Kian Hsiang Low, Mun Choon Chan:
FCM-sketch: generic network measurements with data plane support. CoNEXT 2020: 78-92 - [c64]Zhongxiang Dai, Yizhou Chen, Bryan Kian Hsiang Low, Patrick Jaillet, Teck-Hua Ho:
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games. ICML 2020: 2291-2301 - [c63]Trong Nghia Hoang, Thanh Lam, Bryan Kian Hsiang Low, Patrick Jaillet:
Learning Task-Agnostic Embedding of Multiple Black-Box Experts for Multi-Task Model Fusion. ICML 2020: 4282-4292 - [c62]Dmitrii Kharkovskii, Zhongxiang Dai, Bryan Kian Hsiang Low:
Private Outsourced Bayesian Optimization. ICML 2020: 5231-5242 - [c61]Rachael Hwee Ling Sim, Yehong Zhang, Mun Choon Chan, Bryan Kian Hsiang Low:
Collaborative Machine Learning with Incentive-Aware Model Rewards. ICML 2020: 8927-8936 - [c60]Sreejith Balakrishnan, Quoc Phong Nguyen, Bryan Kian Hsiang Low, Harold Soh:
Efficient Exploration of Reward Functions in Inverse Reinforcement Learning via Bayesian Optimization. NeurIPS 2020 - [c59]Zhongxiang Dai, Bryan Kian Hsiang Low, Patrick Jaillet:
Federated Bayesian Optimization via Thompson Sampling. NeurIPS 2020 - [c58]Quoc Phong Nguyen, Bryan Kian Hsiang Low, Patrick Jaillet:
Variational Bayesian Unlearning. NeurIPS 2020 - [i38]Dmitrii Kharkovskii, Chun Kai Ling, Kian Hsiang Low:
Nonmyopic Gaussian Process Optimization with Macro-Actions. CoRR abs/2002.09670 (2020) - [i37]Zhongxiang Dai, Yizhou Chen, Kian Hsiang Low, Patrick Jaillet, Teck-Hua Ho:
R2-B2: Recursive Reasoning-Based Bayesian Optimization for No-Regret Learning in Games. CoRR abs/2006.16679 (2020) - [i36]Zhongxiang Dai, Kian Hsiang Low, Patrick Jaillet:
Federated Bayesian Optimization via Thompson Sampling. CoRR abs/2010.10154 (2020) - [i35]Rachael Hwee Ling Sim, Yehong Zhang, Mun Choon Chan, Bryan Kian Hsiang Low:
Collaborative Machine Learning with Incentive-Aware Model Rewards. CoRR abs/2010.12797 (2020) - [i34]Dmitrii Kharkovskii, Zhongxiang Dai, Bryan Kian Hsiang Low:
Private Outsourced Bayesian Optimization. CoRR abs/2010.12799 (2020) - [i33]Quoc Phong Nguyen, Bryan Kian Hsiang Low, Patrick Jaillet:
Variational Bayesian Unlearning. CoRR abs/2010.12883 (2020) - [i32]Sreejith Balakrishnan, Quoc Phong Nguyen, Bryan Kian Hsiang Low, Harold Soh:
Efficient Exploration of Reward Functions in Inverse Reinforcement Learning via Bayesian Optimization. CoRR abs/2011.08541 (2020) - [i31]Quoc Phong Nguyen, Sebastian Tay, Bryan Kian Hsiang Low, Patrick Jaillet:
Top-k Ranking Bayesian Optimization. CoRR abs/2012.10688 (2020) - [i30]Quoc Phong Nguyen, Bryan Kian Hsiang Low, Patrick Jaillet:
An Information-Theoretic Framework for Unifying Active Learning Problems. CoRR abs/2012.10695 (2020)
2010 – 2019
- 2019
- [c57]Trong Nghia Hoang, Quang Minh Hoang, Kian Hsiang Low, Jonathan P. How:
Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems. AAAI 2019: 7850-7857 - [c56]Quoc Phong Nguyen, Kar Wai Lim, Dinil Mon Divakaran, Kian Hsiang Low, Mun Choon Chan:
GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly Detection. CNS 2019: 91-99 - [c55]Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low, Patrick Jaillet:
Bayesian Optimization Meets Bayesian Optimal Stopping. ICML 2019: 1496-1506 - [c54]Quang Minh Hoang, Trong Nghia Hoang, Bryan Kian Hsiang Low, Carl Kingsford:
Collective Model Fusion for Multiple Black-Box Experts. ICML 2019: 2742-2750 - [c53]Jingfeng Zhang
, Bo Han, Laura Wynter, Bryan Kian Hsiang Low, Mohan S. Kankanhalli:
Towards Robust ResNet: A Small Step but a Giant Leap. IJCAI 2019: 4285-4291 - [c52]Haibin Yu, Trong Nghia Hoang, Bryan Kian Hsiang Low, Patrick Jaillet:
Stochastic Variational Inference for Bayesian Sparse Gaussian Process Regression. IJCNN 2019: 1-8 - [c51]Haibin Yu, Yizhou Chen, Bryan Kian Hsiang Low, Patrick Jaillet, Zhongxiang Dai:
Implicit Posterior Variational Inference for Deep Gaussian Processes. NeurIPS 2019: 14475-14486 - [c50]Yehong Zhang, Zhongxiang Dai, Bryan Kian Hsiang Low:
Bayesian Optimization with Binary Auxiliary Information. UAI 2019: 1222-1232 - [i29]Jingfeng Zhang, Bo Han, Laura Wynter, Kian Hsiang Low, Mohan S. Kankanhalli:
Towards Robust ResNet: A Small Step but A Giant Leap. CoRR abs/1902.10887 (2019) - [i28]Quoc Phong Nguyen, Kar Wai Lim, Dinil Mon Divakaran, Kian Hsiang Low, Mun Choon Chan:
GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly Detection. CoRR abs/1903.06661 (2019) - [i27]Yehong Zhang, Zhongxiang Dai, Kian Hsiang Low:
Bayesian Optimization with Binary Auxiliary Information. CoRR abs/1906.07277 (2019) - [i26]Mohit Rajpal, Bryan Kian Hsiang Low:
A Unifying Framework of Bilinear LSTMs. CoRR abs/1910.10294 (2019) - [i25]Haibin Yu, Yizhou Chen, Zhongxiang Dai, Kian Hsiang Low, Patrick Jaillet:
Implicit Posterior Variational Inference for Deep Gaussian Processes. CoRR abs/1910.11998 (2019) - [i24]Tien Mai, Quoc Phong Nguyen, Kian Hsiang Low, Patrick Jaillet:
Inverse Reinforcement Learning with Missing Data. CoRR abs/1911.06930 (2019) - [i23]Tong Teng, Jie Chen, Yehong Zhang, Kian Hsiang Low:
Scalable Variational Bayesian Kernel Selection for Sparse Gaussian Process Regression. CoRR abs/1912.02641 (2019) - 2018
- [c49]Trong Nghia Hoang, Quang Minh Hoang, Ruofei Ouyang, Kian Hsiang Low:
Decentralized High-Dimensional Bayesian Optimization With Factor Graphs. AAAI 2018: 3231-3238 - [c48]Ruofei Ouyang, Kian Hsiang Low:
Gaussian Process Decentralized Data Fusion Meets Transfer Learning in Large-Scale Distributed Cooperative Perception. AAAI 2018: 3876-3883 - [i22]Trong Nghia Hoang, Quang Minh Hoang, Kian Hsiang Low, Jonathan P. How:
Collective Online Learning via Decentralized Gaussian Processes in Massive Multi-Agent Systems. CoRR abs/1805.09266 (2018) - 2017
- [c47]Quang Minh Hoang, Trong Nghia Hoang, Kian Hsiang Low:
A Generalized Stochastic Variational Bayesian Hyperparameter Learning Framework for Sparse Spectrum Gaussian Process Regression. AAAI 2017: 2007-2014 - [c46]Erik A. Daxberger, Bryan Kian Hsiang Low:
Distributed Batch Gaussian Process Optimization. ICML 2017: 951-960 - [i21]Haibin Yu, Trong Nghia Hoang, Kian Hsiang Low, Patrick Jaillet:
Stochastic Variational Inference for Fully Bayesian Sparse Gaussian Process Regression Models. CoRR abs/1711.00221 (2017) - [i20]Ruofei Ouyang, Kian Hsiang Low:
Gaussian Process Decentralized Data Fusion Meets Transfer Learning in Large-Scale Distributed Cooperative Perception. CoRR abs/1711.06064 (2017) - [i19]Trong Nghia Hoang, Quang Minh Hoang, Ruofei Ouyang, Kian Hsiang Low:
Decentralized High-Dimensional Bayesian Optimization with Factor Graphs. CoRR abs/1711.07033 (2017) - 2016
- [c45]Chun Kai Ling, Kian Hsiang Low, Patrick Jaillet:
Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond. AAAI 2016: 1860-1866 - [c44]Yehong Zhang, Trong Nghia Hoang, Kian Hsiang Low, Mohan S. Kankanhalli:
Near-Optimal Active Learning of Multi-Output Gaussian Processes. AAAI 2016: 2351-2357 - [c43]Chao Wang, Somchaya Liemhetcharat, Kian Hsiang Low:
Multi-Agent Continuous Transportation with Online Balanced Partitioning: (Extended Abstract). AAMAS 2016: 1303-1304 - [c42]Trong Nghia Hoang, Quang Minh Hoang, Bryan Kian Hsiang Low:
A Distributed Variational Inference Framework for Unifying Parallel Sparse Gaussian Process Regression Models. ICML 2016: 382-391 - [c41]Jie Fu, Hongyin Luo, Jiashi Feng, Kian Hsiang Low, Tat-Seng Chua:
DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks. IJCAI 2016: 1469-1475 - [c40]Yuhui Wang, Christian von der Weth, Yehong Zhang, Kian Hsiang Low, Vivek K. Singh, Mohan S. Kankanhalli:
Concept Based Hybrid Fusion of Multimodal Event Signals. ISM 2016: 14-19 - [i18]Jie Fu, Hongyin Luo, Jiashi Feng, Kian Hsiang Low, Tat-Seng Chua:
DrMAD: Distilling Reverse-Mode Automatic Differentiation for Optimizing Hyperparameters of Deep Neural Networks. CoRR abs/1601.00917 (2016) - [i17]Quang Minh Hoang, Trong Nghia Hoang, Kian Hsiang Low:
A Generalized Stochastic Variational Bayesian Hyperparameter Learning Framework for Sparse Spectrum Gaussian Process Regression. CoRR abs/1611.06080 (2016) - 2015
- [j5]Jie Chen, Kian Hsiang Low, Yujian Yao, Patrick Jaillet:
Gaussian Process Decentralized Data Fusion and Active Sensing for Spatiotemporal Traffic Modeling and Prediction in Mobility-on-Demand Systems. IEEE Trans Autom. Sci. Eng. 12(3): 901-921 (2015) - [c39]Kian Hsiang Low, Jiangbo Yu, Jie Chen, Patrick Jaillet:
Parallel Gaussian Process Regression for Big Data: Low-Rank Representation Meets Markov Approximation. AAAI 2015: 2821-2827 - [c38]Trong Nghia Hoang, Quang Minh Hoang, Bryan Kian Hsiang Low:
A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data. ICML 2015: 569-578 - [c37]Quoc Phong Nguyen, Kian Hsiang Low, Patrick Jaillet:
Inverse Reinforcement Learning with Locally Consistent Reward Functions. NIPS 2015: 1747-1755 - [i16]Chun Kai Ling, Kian Hsiang Low, Patrick Jaillet:
Gaussian Process Planning with Lipschitz Continuous Reward Functions: Towards Unifying Bayesian Optimization, Active Learning, and Beyond. CoRR abs/1511.06890 (2015) - [i15]Yehong Zhang, Trong Nghia Hoang, Kian Hsiang Low, Mohan S. Kankanhalli:
Near-Optimal Active Learning of Multi-Output Gaussian Processes. CoRR abs/1511.06891 (2015) - [i14]Chao Wang, Somchaya Liemhetcharat, Kian Hsiang Low:
Multi-Agent Continuous Transportation with Online Balanced Partitioning. CoRR abs/1511.07209 (2015) - 2014
- [c36]Nuo Xu, Kian Hsiang Low, Jie Chen, Keng Kiat Lim, Etkin Baris Ozgul:
GP-Localize: Persistent Mobile Robot Localization Using Online Sparse Gaussian Process Observation Model. AAAI 2014: 2585-2593 - [c35]Etkin Baris Ozgul, Somchaya Liemhetcharat, Kian Hsiang Low:
Multi-agent ad hoc team partitioning by observing and modeling single-agent performance. APSIPA 2014: 1-7 - [c34]Ruofei Ouyang, Kian Hsiang Low, Jie Chen, Patrick Jaillet:
Multi-robot active sensing of non-stationary gaussian process-based environmental phenomena. AAMAS 2014: 573-580 - [c33]Prabhu Natarajan, Kian Hsiang Low, Mohan S. Kankanhalli:
Decision-theoretic approach to maximizing fairness in multi-target observation in multi-camera surveillance. AAMAS 2014: 1521-1522 - [c32]Kian Hsiang Low, Jie Chen, Trong Nghia Hoang, Nuo Xu, Patrick Jaillet:
Recent Advances in Scaling Up Gaussian Process Predictive Models for Large Spatiotemporal Data. DyDESS 2014: 167-181 - [c31]Prabhu Natarajan, Kian Hsiang Low, Mohan S. Kankanhalli:
No One is Left "Unwatched": Fairness in Observation of Crowds of Mobile Targets in Active Camera Surveillance. ECAI 2014: 1155-1160 - [c30]Prabhu Natarajan, Trong Nghia Hoang, Yongkang Wong, Kian Hsiang Low, Mohan S. Kankanhalli:
Scalable Decision-Theoretic Coordination and Control for Real-time Active Multi-Camera Surveillance. ICDSC 2014: 38:1-38:6 - [c29]Trong Nghia Hoang, Bryan Kian Hsiang Low, Patrick Jaillet, Mohan S. Kankanhalli:
Nonmyopic \(\epsilon\)-Bayes-Optimal Active Learning of Gaussian Processes. ICML 2014: 739-747 - [c28]Trong Nghia Hoang, Kian Hsiang Low, Patrick Jaillet, Mohan S. Kankanhalli:
Active Learning Is Planning: Nonmyopic ε-Bayes-Optimal Active Learning of Gaussian Processes. ECML/PKDD (3) 2014: 494-498 - [c27]Kian Hsiang Low, Nuo Xu, Jie Chen, Keng Kiat Lim, Etkin Baris Özgül:
Generalized Online Sparse Gaussian Processes with Application to Persistent Mobile Robot Localization. ECML/PKDD (3) 2014: 499-503 - [i13]Nuo Xu, Kian Hsiang Low, Jie Chen, Keng Kiat Lim, Etkin Baris Ozgul:
GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model. CoRR abs/1404.5165 (2014) - [i12]Jie Chen, Kian Hsiang Low, Colin Keng-Yan Tan, Ali Oran, Patrick Jaillet, John M. Dolan, Gaurav S. Sukhatme:
Decentralized Data Fusion and Active Sensing with Mobile Sensors for Modeling and Predicting Spatiotemporal Traffic Phenomena. CoRR abs/1408.2046 (2014) - [i11]Jie Chen, Nannan Cao, Kian Hsiang Low, Ruofei Ouyang, Colin Keng-Yan Tan, Patrick Jaillet:
Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations. CoRR abs/1408.2060 (2014) - [i10]Kian Hsiang Low, Jiangbo Yu, Jie Chen, Patrick Jaillet:
Parallel Gaussian Process Regression for Big Data: Low-Rank Representation Meets Markov Approximation. CoRR abs/1411.4510 (2014) - 2013
- [c26]Nannan Cao, Kian Hsiang Low, John M. Dolan:
Multi-robot informative path planning for active sensing of environmental phenomena: a tale of two algorithms. AAMAS 2013: 7-14 - [c25]