
Simon Lacoste-Julien
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2020
- [c44]Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark Schmidt, Simon Lacoste-Julien:
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation. AISTATS 2020: 1375-1386 - [c43]Waïss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel:
Accelerating Smooth Games by Manipulating Spectral Shapes. AISTATS 2020: 1705-1715 - [c42]Jose Gallego-Posada, Ankit Vani, Max Schwarzer, Simon Lacoste-Julien:
GAIT: A Geometric Approach to Information Theory. AISTATS 2020: 2601-2611 - [c41]Waïss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel:
A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Differentiable Games. AISTATS 2020: 2863-2873 - [c40]Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, Simon Lacoste-Julien:
A Closer Look at the Optimization Landscapes of Generative Adversarial Networks. ICLR 2020 - [c39]Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, Simon Lacoste-Julien:
Gradient-Based Neural DAG Learning. ICLR 2020 - [c38]Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas:
Stochastic Hamiltonian Gradient Methods for Smooth Games. ICML 2020: 6370-6381 - [c37]Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton:
Adversarial Example Games. NeurIPS 2020 - [c36]Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, Alexandre Drouin:
Differentiable Causal Discovery from Interventional Data. NeurIPS 2020 - [i55]Waïss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel:
Accelerating Smooth Games by Manipulating Spectral Shapes. CoRR abs/2001.00602 (2020) - [i54]Nicolas Loizou, Sharan Vaswani, Issam H. Laradji, Simon Lacoste-Julien:
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence. CoRR abs/2002.10542 (2020) - [i53]Rémi Le Priol, Reza Babanezhad Harikandeh, Yoshua Bengio, Simon Lacoste-Julien:
An Analysis of the Adaptation Speed of Causal Models. CoRR abs/2005.09136 (2020) - [i52]Sharan Vaswani, Reza Babanezhad, Jose Gallego, Aaron Mishkin, Simon Lacoste-Julien, Nicolas Le Roux:
To Each Optimizer a Norm, To Each Norm its Generalization. CoRR abs/2006.06821 (2020) - [i51]Sharan Vaswani, Frederik Kunstner, Issam H. Laradji, Si Yi Meng, Mark Schmidt, Simon Lacoste-Julien:
Adaptive Gradient Methods Converge Faster with Over-Parameterization (and you can do a line-search). CoRR abs/2006.06835 (2020) - [i50]Avishek Joey Bose, Gauthier Gidel, Hugo Berard, Andre Cianflone, Pascal Vincent, Simon Lacoste-Julien, William L. Hamilton:
Adversarial Example Games. CoRR abs/2007.00720 (2020) - [i49]Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, Alexandre Drouin:
Differentiable Causal Discovery from Interventional Data. CoRR abs/2007.01754 (2020) - [i48]Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien, Ioannis Mitliagkas:
Stochastic Hamiltonian Gradient Methods for Smooth Games. CoRR abs/2007.04202 (2020) - [i47]Aristide Baratin, Thomas George, César Laurent, R. Devon Hjelm, Guillaume Lajoie, Pascal Vincent, Simon Lacoste-Julien:
Implicit Regularization in Deep Learning: A View from Function Space. CoRR abs/2008.00938 (2020) - [i46]Yassine Yaakoubi, Simon Lacoste-Julien, François Soumis:
Flight-connection Prediction for Airline Crew Scheduling to Construct Initial Clusters for OR Optimizer. CoRR abs/2009.12501 (2020) - [i45]Yassine Yaakoubi, François Soumis, Simon Lacoste-Julien:
Machine Learning in Airline Crew Pairing to Construct Initial Clusters for Dynamic Constraint Aggregation. CoRR abs/2010.00134 (2020) - [i44]Ignavier Ng, Sébastien Lachapelle, Nan Rosemary Ke, Simon Lacoste-Julien:
On the Convergence of Continuous Constrained Optimization for Structure Learning. CoRR abs/2011.11150 (2020) - [i43]Reza Babanezhad, Simon Lacoste-Julien:
Geometry-Aware Universal Mirror-Prox. CoRR abs/2011.11203 (2020)
2010 – 2019
- 2019
- [j4]Edouard Oyallon
, Sergey Zagoruyko, Gabriel Huang
, Nikos Komodakis, Simon Lacoste-Julien
, Matthew B. Blaschko
, Eugene Belilovsky:
Scattering Networks for Hybrid Representation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(9): 2208-2221 (2019) - [c35]Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-Julien, Ioannis Mitliagkas:
Negative Momentum for Improved Game Dynamics. AISTATS 2019: 1802-1811 - [c34]Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, Simon Lacoste-Julien:
A Variational Inequality Perspective on Generative Adversarial Networks. ICLR (Poster) 2019 - [c33]Tatjana Chavdarova, Gauthier Gidel, François Fleuret, Simon Lacoste-Julien:
Reducing Noise in GAN Training with Variance Reduced Extragradient. NeurIPS 2019: 391-401 - [c32]Gauthier Gidel, Francis R. Bach, Simon Lacoste-Julien:
Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks. NeurIPS 2019: 3196-3206 - [c31]Sharan Vaswani, Aaron Mishkin, Issam H. Laradji, Mark Schmidt, Gauthier Gidel, Simon Lacoste-Julien:
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates. NeurIPS 2019: 3727-3740 - [i42]Gabriel Huang, Hugo Larochelle, Simon Lacoste-Julien:
Centroid Networks for Few-Shot Clustering and Unsupervised Few-Shot Classification. CoRR abs/1902.08605 (2019) - [i41]Tatjana Chavdarova, Gauthier Gidel, François Fleuret, Simon Lacoste-Julien:
Reducing Noise in GAN Training with Variance Reduced Extragradient. CoRR abs/1904.08598 (2019) - [i40]Gauthier Gidel, Francis R. Bach, Simon Lacoste-Julien:
Implicit Regularization of Discrete Gradient Dynamics in Deep Linear Neural Networks. CoRR abs/1904.13262 (2019) - [i39]Sharan Vaswani, Aaron Mishkin, Issam H. Laradji, Mark Schmidt, Gauthier Gidel, Simon Lacoste-Julien:
Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates. CoRR abs/1905.09997 (2019) - [i38]Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, Simon Lacoste-Julien:
Gradient-Based Neural DAG Learning. CoRR abs/1906.02226 (2019) - [i37]Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, Simon Lacoste-Julien:
A Closer Look at the Optimization Landscapes of Generative Adversarial Networks. CoRR abs/1906.04848 (2019) - [i36]Waïss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, Gauthier Gidel:
A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games. CoRR abs/1906.05945 (2019) - [i35]Jose Gallego-Posada, Ankit Vani, Max Schwarzer, Simon Lacoste-Julien:
GEAR: Geometry-Aware Rényi Information. CoRR abs/1906.08325 (2019) - [i34]Si Yi Meng, Sharan Vaswani, Issam H. Laradji, Mark Schmidt, Simon Lacoste-Julien:
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation. CoRR abs/1910.04920 (2019) - 2018
- [j3]Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:
Improved Asynchronous Parallel Optimization Analysis for Stochastic Incremental Methods. J. Mach. Learn. Res. 19: 81:1-81:68 (2018) - [j2]Jean-Baptiste Alayrac
, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien
:
Learning from Narrated Instruction Videos. IEEE Trans. Pattern Anal. Mach. Intell. 40(9): 2194-2208 (2018) - [c30]Gauthier Gidel, Fabian Pedregosa, Simon Lacoste-Julien:
Frank-Wolfe Splitting via Augmented Lagrangian Method. AISTATS 2018: 1456-1465 - [c29]Gabriel Huang, Hugo Berard, Ahmed Touati, Gauthier Gidel, Pascal Vincent, Simon Lacoste-Julien:
Parametric Adversarial Divergences are Good Task Losses for Generative Modeling. ICLR (Workshop) 2018 - [c28]Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin, Simon Lacoste-Julien:
SEARNN: Training RNNs with global-local losses. ICLR (Poster) 2018 - [c27]Kirill Struminsky, Simon Lacoste-Julien, Anton Osokin:
Quantifying Learning Guarantees for Convex but Inconsistent Surrogates. NeurIPS 2018: 667-675 - [c26]Rémi Le Priol, Alexandre Piché, Simon Lacoste-Julien:
Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields. UAI 2018: 815-824 - [i33]Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:
Improved asynchronous parallel optimization analysis for stochastic incremental methods. CoRR abs/1801.03749 (2018) - [i32]Akram Erraqabi, Aristide Baratin, Yoshua Bengio, Simon Lacoste-Julien:
A3T: Adversarially Augmented Adversarial Training. CoRR abs/1801.04055 (2018) - [i31]Gauthier Gidel, Hugo Berard, Pascal Vincent, Simon Lacoste-Julien:
A Variational Inequality Perspective on Generative Adversarial Nets. CoRR abs/1802.10551 (2018) - [i30]Gauthier Gidel, Fabian Pedregosa, Simon Lacoste-Julien:
Frank-Wolfe Splitting via Augmented Lagrangian Method. CoRR abs/1804.03176 (2018) - [i29]Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Gabriel Huang, Rémi Le Priol, Simon Lacoste-Julien, Ioannis Mitliagkas:
Negative Momentum for Improved Game Dynamics. CoRR abs/1807.04740 (2018) - [i28]Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Simon Lacoste-Julien, Andrea Lodi:
Predicting Solution Summaries to Integer Linear Programs under Imperfect Information with Machine Learning. CoRR abs/1807.11876 (2018) - [i27]Edouard Oyallon, Sergey Zagoruyko, Gabriel Huang, Nikos Komodakis, Simon Lacoste-Julien, Matthew B. Blaschko, Eugene Belilovsky:
Scattering Networks for Hybrid Representation Learning. CoRR abs/1809.06367 (2018) - [i26]Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-Julien, Ioannis Mitliagkas:
A Modern Take on the Bias-Variance Tradeoff in Neural Networks. CoRR abs/1810.08591 (2018) - [i25]Kirill Struminsky, Simon Lacoste-Julien, Anton Osokin:
Quantifying Learning Guarantees for Convex but Inconsistent Surrogates. CoRR abs/1810.11544 (2018) - 2017
- [c25]Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:
ASAGA: Asynchronous Parallel SAGA. AISTATS 2017: 46-54 - [c24]Gauthier Gidel, Tony Jebara, Simon Lacoste-Julien:
Frank-Wolfe Algorithms for Saddle Point Problems. AISTATS 2017: 362-371 - [c23]Jean-Baptiste Alayrac, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Joint Discovery of Object States and Manipulation Actions. ICCV 2017: 2146-2155 - [c22]Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, Simon Lacoste-Julien:
A Closer Look at Memorization in Deep Networks. ICML 2017: 233-242 - [c21]Fabian Pedregosa, Rémi Leblond, Simon Lacoste-Julien:
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization. NIPS 2017: 56-65 - [c20]Anton Osokin, Francis R. Bach, Simon Lacoste-Julien:
On Structured Prediction Theory with Calibrated Convex Surrogate Losses. NIPS 2017: 302-313 - [i24]Jean-Baptiste Alayrac, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Joint Discovery of Object States and Manipulating Actions. CoRR abs/1702.02738 (2017) - [i23]Anton Osokin, Francis R. Bach, Simon Lacoste-Julien:
On Structured Prediction Theory with Calibrated Convex Surrogate Losses. CoRR abs/1703.02403 (2017) - [i22]Rémi Leblond, Jean-Baptiste Alayrac, Anton Osokin, Simon Lacoste-Julien:
SEARNN: Training RNNs with Global-Local Losses. CoRR abs/1706.04499 (2017) - [i21]Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, Simon Lacoste-Julien:
A Closer Look at Memorization in Deep Networks. CoRR abs/1706.05394 (2017) - [i20]Fabian Pedregosa, Rémi Leblond, Simon Lacoste-Julien:
Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization. CoRR abs/1707.06468 (2017) - [i19]Gabriel Huang, Gauthier Gidel, Hugo Berard, Ahmed Touati, Simon Lacoste-Julien:
Adversarial Divergences are Good Task Losses for Generative Modeling. CoRR abs/1708.02511 (2017) - [i18]Rémi Le Priol, Alexandre Piché, Simon Lacoste-Julien:
Adaptive Stochastic Dual Coordinate Ascent for Conditional Random Fields. CoRR abs/1712.08577 (2017) - 2016
- [c19]Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Unsupervised Learning from Narrated Instruction Videos. CVPR 2016: 4575-4583 - [c18]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Beyond CCA: Moment Matching for Multi-View Models. ICML 2016: 458-467 - [c17]Anton Osokin, Jean-Baptiste Alayrac, Isabella Lukasewitz, Puneet Kumar Dokania, Simon Lacoste-Julien:
Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs. ICML 2016: 593-602 - [c16]Pascal Germain, Francis R. Bach, Alexandre Lacoste, Simon Lacoste-Julien:
PAC-Bayesian Theory Meets Bayesian Inference. NIPS 2016: 1876-1884 - [i17]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Beyond CCA: Moment Matching for Multi-View Models. CoRR abs/1602.09013 (2016) - [i16]Pascal Germain, Francis R. Bach, Alexandre Lacoste, Simon Lacoste-Julien:
PAC-Bayesian Theory Meets Bayesian Inference. CoRR abs/1605.08636 (2016) - [i15]Anton Osokin, Jean-Baptiste Alayrac, Isabella Lukasewitz, Puneet Kumar Dokania, Simon Lacoste-Julien:
Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs. CoRR abs/1605.09346 (2016) - [i14]Rémi Leblond, Fabian Pedregosa, Simon Lacoste-Julien:
Asaga: Asynchronous Parallel Saga. CoRR abs/1606.04809 (2016) - [i13]Simon Lacoste-Julien:
Convergence Rate of Frank-Wolfe for Non-Convex Objectives. CoRR abs/1607.00345 (2016) - [i12]Gauthier Gidel, Tony Jebara, Simon Lacoste-Julien:
Frank-Wolfe Algorithms for Saddle Point Problems. CoRR abs/1610.07797 (2016) - 2015
- [c15]Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. AISTATS 2015 - [c14]Visesh Chari, Simon Lacoste-Julien, Ivan Laptev, Josef Sivic:
On pairwise costs for network flow multi-object tracking. CVPR 2015: 5537-5545 - [c13]Simon Lacoste-Julien, Martin Jaggi:
On the Global Linear Convergence of Frank-Wolfe Optimization Variants. NIPS 2015: 496-504 - [c12]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Rethinking LDA: Moment Matching for Discrete ICA. NIPS 2015: 514-522 - [c11]Rahul G. Krishnan, Simon Lacoste-Julien, David A. Sontag:
Barrier Frank-Wolfe for Marginal Inference. NIPS 2015: 532-540 - [c10]Thomas Hofmann, Aurélien Lucchi, Simon Lacoste-Julien, Brian McWilliams:
Variance Reduced Stochastic Gradient Descent with Neighbors. NIPS 2015: 2305-2313 - [i11]Simon Lacoste-Julien, Fredrik Lindsten, Francis R. Bach:
Sequential Kernel Herding: Frank-Wolfe Optimization for Particle Filtering. CoRR abs/1501.02056 (2015) - [i10]Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev, Simon Lacoste-Julien:
Learning from narrated instruction videos. CoRR abs/1506.09215 (2015) - [i9]Anastasia Podosinnikova, Francis R. Bach, Simon Lacoste-Julien:
Rethinking LDA: moment matching for discrete ICA. CoRR abs/1507.01784 (2015) - [i8]Rahul G. Krishnan, Simon Lacoste-Julien, David A. Sontag:
Barrier Frank-Wolfe for Marginal Inference. CoRR abs/1511.02124 (2015) - [i7]Simon Lacoste-Julien, Martin Jaggi:
On the Global Linear Convergence of Frank-Wolfe Optimization Variants. CoRR abs/1511.05932 (2015) - 2014
- [c9]Aaron Defazio, Francis R. Bach, Simon Lacoste-Julien:
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. NIPS 2014: 1646-1654 - [i6]Aaron Defazio, Francis R. Bach, Simon Lacoste-Julien:
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. CoRR abs/1407.0202 (2014) - [i5]Visesh Chari, Simon Lacoste-Julien, Ivan Laptev, Josef Sivic:
On Pairwise Cost for Multi-Object Network Flow Tracking. CoRR abs/1408.3304 (2014) - 2013
- [c8]Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, Patrick Pletscher:
Block-Coordinate Frank-Wolfe Optimization for Structural SVMs. ICML (1) 2013: 53-61 - [c7]Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Graepel, Zoubin Ghahramani:
SIGMa: simple greedy matching for aligning large knowledge bases. KDD 2013: 572-580 - 2012
- [c6]Francis R. Bach, Simon Lacoste-Julien, Guillaume Obozinski:
On the Equivalence between Herding and Conditional Gradient Algorithms. ICML 2012 - [i4]Francis R. Bach, Simon Lacoste-Julien, Guillaume Obozinski:
On the Equivalence between Herding and Conditional Gradient Algorithms. CoRR abs/1203.4523 (2012) - [i3]Simon Lacoste-Julien, Konstantina Palla, Alex Davies, Gjergji Kasneci, Thore Graepel, Zoubin Ghahramani:
SiGMa: Simple Greedy Matching for Aligning Large Knowledge Bases. CoRR abs/1207.4525 (2012) - [i2]Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, Patrick Pletscher:
Stochastic Block-Coordinate Frank-Wolfe Optimization for Structural SVMs. CoRR abs/1207.4747 (2012) - [i1]Simon Lacoste-Julien, Mark Schmidt, Francis R. Bach:
A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method. CoRR abs/1212.2002 (2012) - 2011
- [c5]Simon Lacoste-Julien, Ferenc Huszar, Zoubin Ghahramani:
Approximate inference for the loss-calibrated Bayesian. AISTATS 2011: 416-424
2000 – 2009
- 2008
- [c4]Simon Lacoste-Julien, Fei Sha, Michael I. Jordan:
DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification. NIPS 2008: 897-904 - 2006
- [j1]Benjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan:
Structured Prediction, Dual Extragradient and Bregman Projections. J. Mach. Learn. Res. 7: 1627-1653 (2006) - [c3]Simon Lacoste-Julien, Benjamin Taskar, Dan Klein, Michael I. Jordan:
Word Alignment via Quadratic Assignment. HLT-NAACL 2006 - 2005
- [c2]Benjamin Taskar, Simon Lacoste-Julien, Dan Klein:
A Discriminative Matching Approach to Word Alignment. HLT/EMNLP 2005: 73-80 - [c1]Benjamin Taskar, Simon Lacoste-Julien, Michael I. Jordan:
Structured Prediction via the Extragradient Method. NIPS 2005: 1345-1352
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2021-01-16 23:09 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint