default search action
Vineeth N. Balasubramanian
Vineeth Nallure Balasubramanian – Vineeth Balasubramanian
Person information
- affiliation: Indian Institute of Technology, Hyderabad, Department of Computer Science and Engineering
- affiliation: Arizona State University, Tempe, Department of Computer Science and Engineering
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j13]Thrupthi Ann John, Vineeth N. Balasubramanian, C. V. Jawahar:
Explaining Deep Face Algorithms Through Visualization: A Survey. IEEE Trans. Biom. Behav. Identity Sci. 6(1): 15-29 (2024) - [c128]Sandesh Kamath, Sankalp Mittal, Amit Deshpande, Vineeth N. Balasubramanian:
Rethinking Robustness of Model Attributions. AAAI 2024: 2688-2696 - [c127]Abbavaram Gowtham Reddy, Vineeth N. Balasubramanian:
NESTER: An Adaptive Neurosymbolic Method for Causal Effect Estimation. AAAI 2024: 14793-14801 - [c126]Abbavaram Gowtham Reddy, Saketh Bachu, Harsharaj Pathak, Benin Godfrey L, Varshaneya V, Vineeth N. Balasubramanian, Satyanarayan Kar:
Towards Learning and Explaining Indirect Causal Effects in Neural Networks. AAAI 2024: 14802-14810 - [c125]Pranoy Panda, Sai Srinivas Kancheti, Vineeth N. Balasubramanian, Gaurav Sinha:
Interpretable Model Drift Detection. COMAD/CODS 2024: 1-9 - [c124]Tarun Ram Menta, Surgan Jandial, Akash Patil, Saketh Bachu, Vimal K. B., Balaji Krishnamurthy, Vineeth N. Balasubramanian, Mausoom Sarkar, Chirag Agarwal:
Active Transferability Estimation. CVPR Workshops 2024: 2659-2670 - [c123]Aveen Dayal, Rishabh Lalla, Linga Reddy Cenkeramaddi, C. Krishna Mohan, Abhinav Kumar, Vineeth N. Balasubramanian:
Improving Unsupervised Domain Adaptation: A Pseudo-candidate Set Approach. ECCV (32) 2024: 127-144 - [c122]Prachi Garg, K. J. Joseph, Vineeth N. Balasubramanian, Necati Cihan Camgöz, Chengde Wan, Kenrick Kin, Weiguang Si, Shugao Ma, Fernando De la Torre:
POET: Prompt Offset Tuning for Continual Human Action Adaptation. ECCV (64) 2024: 436-455 - [c121]Pranoy Panda, Siddharth Tandon, Vineeth N. Balasubramanian:
FW-Shapley: Real-Time Estimation of Weighted Shapley Values. ICASSP 2024: 6210-6214 - [c120]Sairam VC Rebbapragada, Pranoy Panda, Vineeth N. Balasubramanian:
C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks. ICRA 2024: 6627-6633 - [c119]Hiran Sarkar, Vishal M. Chudasama, Naoyuki Onoe, Pankaj Wasnik, Vineeth N. Balasubramanian:
Open-Set Object Detection By Aligning Known Class Representations. WACV 2024: 218-227 - [c118]Bhat Dittakavi, Bharathi Callepalli, Aleti Vardhan, Sai Vikas Desai, Vineeth N. Balasubramanian:
CARE: Counterfactual-based Algorithmic Recourse for Explainable Pose Correction. WACV 2024: 4890-4899 - [i91]Tanmay Garg, Deepika Vemuri, Vineeth N. Balasubramanian:
Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks. CoRR abs/2401.04647 (2024) - [i90]Purbayan Kar, Vishal M. Chudasama, Naoyuki Onoe, Pankaj Wasnik, Vineeth Balasubramanian:
Fiducial Focus Augmentation for Facial Landmark Detection. CoRR abs/2402.15044 (2024) - [i89]Sairam VC Rebbapragada, Pranoy Panda, Vineeth N. Balasubramanian:
C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks. CoRR abs/2404.19276 (2024) - [i88]Hari Chandana Kuchibhotla, Sai Srinivas Kancheti, Abbavaram Gowtham Reddy, Vineeth N. Balasubramanian:
Can Better Text Semantics in Prompt Tuning Improve VLM Generalization? CoRR abs/2405.07921 (2024) - [i87]Aniket Vashishtha, Abhinav Kumar, Abbavaram Gowtham Reddy, Vineeth N. Balasubramanian, Amit Sharma:
Teaching Transformers Causal Reasoning through Axiomatic Training. CoRR abs/2407.07612 (2024) - [i86]Vishal M. Chudasama, Hiran Sarkar, Pankaj Wasnik, Vineeth N. Balasubramanian, Jayateja Kalla:
Beyond Few-shot Object Detection: A Detailed Survey. CoRR abs/2408.14249 (2024) - [i85]Rahul Ramachandran, Tejal Kulkarni, Charchit Sharma, Deepak Vijaykeerthy, Vineeth N. Balasubramanian:
On Evaluation of Vision Datasets and Models using Human Competency Frameworks. CoRR abs/2409.04041 (2024) - 2023
- [c117]Purbayan Kar, Vishal M. Chudasama, Naoyuki Onoe, Pankaj Wasnik, Vineeth Balasubramanian:
Fiducial Focus Augmentation for Facial Landmark Detection. BMVC 2023: 562-565 - [c116]Gaurav Bhatt, Deepayan Das, Leonid Sigal, Vineeth N. Balasubramanian:
Weakly-supervised Spatially Grounded Concept Learner for Few-Shot Learning. BMVC 2023: 858-867 - [c115]Surgan Jandial, Yash Khasbage, Arghya Pal, Balaji Krishnamurthy, Vineeth N. Balasubramanian:
RetroKD : Leveraging Past States for Regularizing Targets in Teacher-Student Learning. COMAD/CODS 2023: 10-18 - [c114]Vimal K. B., Saketh Bachu, Tanmay Garg, Niveditha Lakshmi Narasimhan, Raghavan Konuru, Vineeth N. Balasubramanian:
Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach. ICCV 2023: 11575-11586 - [c113]Shubhra Aich, Jesús Ruiz-Santaquiteria, Zhenyu Lu, Prachi Garg, K. J. Joseph, Alvaro Fernandez Garcia, Vineeth N. Balasubramanian, Kenrick Kin, Chengde Wan, Necati Cihan Camgöz, Shugao Ma, Fernando De la Torre:
Data-Free Class-Incremental Hand Gesture Recognition. ICCV 2023: 20901-20910 - [c112]Gaurav Bhatt, Deepayan Das, Leonid Sigal, Vineeth N. Balasubramanian:
Mitigating the Effect of Incidental Correlations on Part-based Learning. NeurIPS 2023 - [c111]Aveen Dayal, Vimal K. B., Linga Reddy Cenkeramaddi, C. Krishna Mohan, Abhinav Kumar, Vineeth N. Balasubramanian:
MADG: Margin-based Adversarial Learning for Domain Generalization. NeurIPS 2023 - [c110]Rebbapragada V. C. Sairam, Monish Keswani, Uttaran Sinha, Nishit Shah, Vineeth N. Balasubramanian:
ARUBA: An Architecture-Agnostic Balanced Loss for Aerial Object Detection. WACV 2023: 3708-3717 - [c109]Gaurav Bhatt, Vineeth N. Balasubramanian:
Learning Style Subspaces for Controllable Unpaired Domain Translation. WACV 2023: 4209-4218 - [i84]Tarun Ram Menta, Surgan Jandial, Akash Patil, Vimal KB, Saketh Bachu, Balaji Krishnamurthy, Vineeth N. Balasubramanian, Chirag Agarwal, Mausoom Sarkar:
Towards Estimating Transferability using Hard Subsets. CoRR abs/2301.06928 (2023) - [i83]Abbavaram Gowtham Reddy, Saketh Bachu, Harsharaj Pathak, Benin L. Godfrey, Vineeth N. Balasubramanian, Varshaneya V, Satya Narayanan Kar:
Learning Causal Attributions in Neural Networks: Beyond Direct Effects. CoRR abs/2303.13850 (2023) - [i82]Chaitanya Devaguptapu, Samarth Sinha, K. J. Joseph, Vineeth N. Balasubramanian, Animesh Garg:
Δ-Networks for Efficient Model Patching. CoRR abs/2303.14772 (2023) - [i81]Abbavaram Gowtham Reddy, Saketh Bachu, Saloni Dash, Charchit Sharma, Amit Sharma, Vineeth N. Balasubramanian:
Rethinking Counterfactual Data Augmentation Under Confounding. CoRR abs/2305.18183 (2023) - [i80]Vimal KB, Saketh Bachu, Tanmay Garg, Niveditha Lakshmi Narasimhan, Raghavan Konuru, Vineeth N. Balasubramanian:
Building a Winning Team: Selecting Source Model Ensembles using a Submodular Transferability Estimation Approach. CoRR abs/2309.02429 (2023) - [i79]Thrupthi Ann John, Vineeth N. Balasubramanian, C. V. Jawahar:
Explaining Deep Face Algorithms through Visualization: A Survey. CoRR abs/2309.14715 (2023) - [i78]Gaurav Bhatt, Deepayan Das, Leonid Sigal, Vineeth N. Balasubramanian:
Mitigating the Effect of Incidental Correlations on Part-based Learning. CoRR abs/2310.00377 (2023) - [i77]Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhinav Kumar, Saketh Bachu, Vineeth N. Balasubramanian, Amit Sharma:
Causal Inference Using LLM-Guided Discovery. CoRR abs/2310.15117 (2023) - [i76]Aveen Dayal, Vimal K. B., Linga Reddy Cenkeramaddi, C. Krishna Mohan, Abhinav Kumar, Vineeth N. Balasubramanian:
MADG: Margin-based Adversarial Learning for Domain Generalization. CoRR abs/2311.08503 (2023) - [i75]Sandesh Kamath, Sankalp Mittal, Amit Deshpande, Vineeth N. Balasubramanian:
Rethinking Robustness of Model Attributions. CoRR abs/2312.10534 (2023) - 2022
- [j12]Vineeth N. Balasubramanian:
Toward explainable deep learning. Commun. ACM 65(11): 68-69 (2022) - [j11]K. J. Joseph, Jathushan Rajasegaran, Salman H. Khan, Fahad Shahbaz Khan, Vineeth N. Balasubramanian:
Incremental Object Detection via Meta-Learning. IEEE Trans. Pattern Anal. Mach. Intell. 44(12): 9209-9216 (2022) - [c108]Abbavaram Gowtham Reddy, Benin Godfrey L, Vineeth N. Balasubramanian:
On Causally Disentangled Representations. AAAI 2022: 8089-8097 - [c107]Arjun Ashok, Chaitanya Devaguptapu, Vineeth N. Balasubramanian:
Learning Modular Structures That Generalize Out-of-Distribution (Student Abstract). AAAI 2022: 12905-12906 - [c106]Piyushi Manupriya, Tarun Ram Menta, Saketha Nath Jagarlapudi, Vineeth N. Balasubramanian:
Improving Attribution Methods by Learning Submodular Functions. AISTATS 2022: 2173-2190 - [c105]Sandesh Kamath, Amit Deshpande, K. V. Subrahmanyam, Vineeth N. Balasubramanian:
Universalization of Any Adversarial Attack using Very Few Test Examples. COMAD/CODS 2022: 72-80 - [c104]Bhat Dittakavi, Divyagna Bavikadi, Sai Vikas Desai, Soumi Chakraborty, Nishant Reddy, Vineeth N. Balasubramanian, Bharathi Callepalli, Ayon Sharma:
Pose Tutor: An Explainable System for Pose Correction in the Wild. CVPR Workshops 2022: 3539-3548 - [c103]K. J. Joseph, Sujoy Paul, Gaurav Aggarwal, Soma Biswas, Piyush Rai, Kai Han, Vineeth N. Balasubramanian:
Spacing Loss for Discovering Novel Categories. CVPR Workshops 2022: 3760-3765 - [c102]K. J. Joseph, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer, Vineeth N. Balasubramanian:
Energy-based Latent Aligner for Incremental Learning. CVPR 2022: 7442-7451 - [c101]Hari Chandana Kuchibhotla, Sumitra S. Malagi, Shivam Chandhok, Vineeth N. Balasubramanian:
Unseen Classes at a Later Time? No Problem. CVPR 2022: 9235-9244 - [c100]Monish Keswani, Sriranjani Ramakrishnan, Nishant Reddy, Vineeth N. Balasubramanian:
Proto2Proto: Can you recognize the car, the way I do? CVPR 2022: 10223-10233 - [c99]Anirban Sarkar, Deepak Vijaykeerthy, Anindya Sarkar, Vineeth N. Balasubramanian:
A Framework for Learning Ante-hoc Explainable Models via Concepts. CVPR 2022: 10276-10285 - [c98]Arjun Ashok, K. J. Joseph, Vineeth N. Balasubramanian:
Class-Incremental Learning with Cross-Space Clustering and Controlled Transfer. ECCV (27) 2022: 105-122 - [c97]K. J. Joseph, Sujoy Paul, Gaurav Aggarwal, Soma Biswas, Piyush Rai, Kai Han, Vineeth N. Balasubramanian:
Novel Class Discovery Without Forgetting. ECCV (24) 2022: 570-586 - [c96]Surgan Jandial, Yash Khasbage, Arghya Pal, Vineeth N. Balasubramanian, Balaji Krishnamurthy:
Distilling the Undistillable: Learning from a Nasty Teacher. ECCV (13) 2022: 587-603 - [c95]Sai Srinivas Kancheti, Abbavaram Gowtham Reddy, Vineeth N. Balasubramanian, Amit Sharma:
Matching Learned Causal Effects of Neural Networks with Domain Priors. ICML 2022: 10676-10696 - [c94]Deepak Kumar Singh, Shyam Nandan Rai, K. J. Joseph, Rohit Saluja, Vineeth N. Balasubramanian, Chetan Arora, Anbumani Subramanian, C. V. Jawahar:
New Objects on the Road? No Problem, We'll Learn Them Too. IROS 2022: 1972-1978 - [c93]Thrupthi Ann John, Isha Dua, Vineeth N. Balasubramanian, C. V. Jawahar:
ETL: Efficient Transfer Learning for Face Tasks. VISIGRAPP (5: VISAPP) 2022: 248-257 - [c92]Vaishnavi Khindkar, Chetan Arora, Vineeth N. Balasubramanian, Anbumani Subramanian, Rohit Saluja, C. V. Jawahar:
To miss-attend is to misalign! Residual Self-Attentive Feature Alignment for Adapting Object Detectors. WACV 2022: 376-386 - [c91]Shyam Nandan Rai, Rohit Saluja, Chetan Arora, Vineeth N. Balasubramanian, Anbumani Subramanian, C. V. Jawahar:
FLUID: Few-Shot Self-Supervised Image Deraining. WACV 2022: 418-427 - [c90]Puneet Mangla, Shivam Chandhok, Vineeth N. Balasubramanian, Fahad Shahbaz Khan:
COCOA: Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen Domains. WACV 2022: 1618-1627 - [c89]Prachi Garg, Rohit Saluja, Vineeth N. Balasubramanian, Chetan Arora, Anbumani Subramanian, C. V. Jawahar:
Multi-Domain Incremental Learning for Semantic Segmentation. WACV 2022: 2080-2090 - [c88]Puneet Mangla, Nupur Kumari, Mayank Singh, Balaji Krishnamurthy, Vineeth N. Balasubramanian:
Data InStance Prior (DISP) in Generative Adversarial Networks. WACV 2022: 3471-3481 - [c87]Anindya Sarkar, Anirban Sarkar, Vineeth N. Balasubramanian:
Leveraging Test-Time Consensus Prediction for Robustness against Unseen Noise. WACV 2022: 3564-3573 - [c86]Saloni Dash, Vineeth N. Balasubramanian, Amit Sharma:
Evaluating and Mitigating Bias in Image Classifiers: A Causal Perspective Using Counterfactuals. WACV 2022: 3879-3888 - [e2]Vineeth N. Balasubramanian, Ivor W. Tsang:
Asian Conference on Machine Learning, ACML 2022, 12-14 December 2022, Hyderabad, India. Proceedings of Machine Learning Research 189, PMLR 2022 [contents] - [i74]K. J. Joseph, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer, Vineeth N. Balasubramanian:
Energy-based Latent Aligner for Incremental Learning. CoRR abs/2203.14952 (2022) - [i73]Hari Chandana Kuchibhotla, Sumitra S. Malagi, Shivam Chandhok, Vineeth N. Balasubramanian:
Unseen Classes at a Later Time? No Problem. CoRR abs/2203.16517 (2022) - [i72]K. J. Joseph, Sujoy Paul, Gaurav Aggarwal, Soma Biswas, Piyush Rai, Kai Han, Vineeth N. Balasubramanian:
Spacing Loss for Discovering Novel Categories. CoRR abs/2204.10595 (2022) - [i71]Monish Keswani, Sriranjani Ramakrishnan, Nishant Reddy, Vineeth N. Balasubramanian:
Proto2Proto: Can you recognize the car, the way I do? CoRR abs/2204.11830 (2022) - [i70]Vedant Singh, Surgan Jandial, Ayush Chopra, Siddharth Ramesh, Balaji Krishnamurthy, Vineeth N. Balasubramanian:
On Conditioning the Input Noise for Controlled Image Generation with Diffusion Models. CoRR abs/2205.03859 (2022) - [i69]Puneet Mangla, Shivam Chandhok, Milan Aggarwal, Vineeth N. Balasubramanian, Balaji Krishnamurthy:
INDIGO: Intrinsic Multimodality for Domain Generalization. CoRR abs/2206.05912 (2022) - [i68]K. J. Joseph, Sujoy Paul, Gaurav Aggarwal, Soma Biswas, Piyush Rai, Kai Han, Vineeth N. Balasubramanian:
Novel Class Discovery without Forgetting. CoRR abs/2207.10659 (2022) - [i67]Arjun Ashok, Chaitanya Devaguptapu, Vineeth Balasubramanian:
Learning Modular Structures That Generalize Out-of-Distribution. CoRR abs/2208.03753 (2022) - [i66]Arjun Ashok, K. J. Joseph, Vineeth Balasubramanian:
Class-Incremental Learning with Cross-Space Clustering and Controlled Transfer. CoRR abs/2208.03767 (2022) - [i65]Rebbapragada V. C. Sairam, Monish Keswani, Uttaran Sinha, Nishit Shah, Vineeth N. Balasubramanian:
ARUBA: An Architecture-Agnostic Balanced Loss for Aerial Object Detection. CoRR abs/2210.04574 (2022) - [i64]Surgan Jandial, Yash Khasbage, Arghya Pal, Vineeth N. Balasubramanian, Balaji Krishnamurthy:
Distilling the Undistillable: Learning from a Nasty Teacher. CoRR abs/2210.11728 (2022) - [i63]Abbavaram Gowtham Reddy, Saloni Dash, Amit Sharma, Vineeth N. Balasubramanian:
Counterfactual Generation Under Confounding. CoRR abs/2210.12368 (2022) - [i62]Abbavaram Gowtham Reddy, Vineeth N. Balasubramanian:
Estimating Treatment Effects using Neurosymbolic Program Synthesis. CoRR abs/2211.04370 (2022) - [i61]Amlan Jyoti, Karthik Balaji Ganesh, Manoj Gayala, Nandita Lakshmi Tunuguntla, Sandesh Kamath, Vineeth N. Balasubramanian:
On the Robustness of Explanations of Deep Neural Network Models: A Survey. CoRR abs/2211.04780 (2022) - 2021
- [j10]Puneet Mangla, Vedant Singh, Shreyas Jayant Havaldar, Vineeth Balasubramanian:
On the benefits of defining vicinal distributions in latent space. Pattern Recognit. Lett. 152: 382-390 (2021) - [j9]Thrupthi Ann John, Vineeth N. Balasubramanian, C. V. Jawahar:
Canonical Saliency Maps: Decoding Deep Face Models. IEEE Trans. Biom. Behav. Identity Sci. 3(4): 561-572 (2021) - [c85]Anindya Sarkar, Anirban Sarkar, Vineeth N. Balasubramanian:
Enhanced Regularizers for Attributional Robustness. AAAI 2021: 2532-2540 - [c84]Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, Vineeth N. Balasubramanian:
A Deeper Look at the Hessian Eigenspectrum of Deep Neural Networks and its Applications to Regularization. AAAI 2021: 9481-9488 - [c83]Shivam Chandhok, Sanath Narayan, Hisham Cholakkal, Rao Muhammad Anwer, Vineeth N. Balasubramanian, Fahad Shahbaz Khan, Ling Shao:
Structured Latent Embeddings for Recognizing Unseen Classes in Unseen Domains. BMVC 2021: 207 - [c82]Aditya Bharti, Vineeth Nallure Balasubramanian, C. V. Jawahar:
Towards Label-Free Few-Shot Learning: How Far Can We Go? CVIP (1) 2021: 256-268 - [c81]Radhika Dua, Sai Srinivas Kancheti, Vineeth N. Balasubramanian:
Beyond VQA: Generating Multi-Word Answers and Rationales to Visual Questions. CVPR Workshops 2021: 1623-1632 - [c80]Pranoy Panda, Sai Srinivas Kancheti, Vineeth N. Balasubramanian:
Instance-Wise Causal Feature Selection for Model Interpretation. CVPR Workshops 2021: 1756-1759 - [c79]K. J. Joseph, Salman H. Khan, Fahad Shahbaz Khan, Vineeth N. Balasubramanian:
Towards Open World Object Detection. CVPR 2021: 5830-5840 - [c78]Chaitanya Devaguptapu, Devansh Agarwal, Gaurav Mittal, Pulkit Gopalani, Vineeth N. Balasubramanian:
On Adversarial Robustness: A Neural Architecture Search perspective. ICCVW 2021: 152-161 - [c77]Varshaneya V, S. Balasubramanian, Vineeth Balasubramanian:
Teaching GANs to sketch in vector format. ICVGIP 2021: 1:1-1:8 - [c76]Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi:
Feature generation for long-tail classification. ICVGIP 2021: 41:1-41:9 - [c75]Anindya Sarkar, Anirban Sarkar, Sowrya Gali, Vineeth N. Balasubramanian:
Adversarial Robustness without Adversarial Training: A Teacher-Guided Curriculum Learning Approach. NeurIPS 2021: 12836-12848 - [c74]Sandesh Kamath, Amit Deshpande, Subrahmanyam Kambhampati Venkata, Vineeth N. Balasubramanian:
Can we have it all? On the Trade-off between Spatial and Adversarial Robustness of Neural Networks. NeurIPS 2021: 27462-27474 - [c73]Vaasudev Narayanan, Aniket Anand Deshmukh, Ürün Dogan, Vineeth N. Balasubramanian:
On Challenges in Unsupervised Domain Generalization. Pre-Registration Workshop @ NeurIPS 2021: 42-58 - [c72]Shivam Chandhok, Vineeth N. Balasubramanian:
Two-Level Adversarial Visual-Semantic Coupling for Generalized Zero-shot Learning. WACV 2021: 3099-3107 - [e1]Vineeth N. Balasubramanian, Ivor W. Tsang:
Asian Conference on Machine Learning, ACML 2021, 17-19 November 2021, Virtual Event. Proceedings of Machine Learning Research 157, PMLR 2021 [contents] - [i60]K. J. Joseph, Salman H. Khan, Fahad Shahbaz Khan, Vineeth N. Balasubramanian:
Towards Open World Object Detection. CoRR abs/2103.02603 (2021) - [i59]Piyushi Manupriya, Saketha Nath Jagarlapudi, Tarun Ram Menta, Vineeth N. Balasubramanian:
Improving Attribution Methods by Learning Submodular Functions. CoRR abs/2104.09073 (2021) - [i58]Pranoy Panda, Sai Srinivas Kancheti, Vineeth N. Balasubramanian:
Instance-wise Causal Feature Selection for Model Interpretation. CoRR abs/2104.12759 (2021) - [i57]Thrupthi Ann John, Vineeth N. Balasubramanian, C. V. Jawahar:
Canonical Saliency Maps: Decoding Deep Face Models. CoRR abs/2105.01386 (2021) - [i56]Gaurav Bhatt, Shivam Chandhok, Vineeth N. Balasubramanian:
Learn from Anywhere: Rethinking Generalized Zero-Shot Learning with Limited Supervision. CoRR abs/2107.04952 (2021) - [i55]Shivam Chandhok, Sanath Narayan, Hisham Cholakkal, Rao Muhammad Anwer, Vineeth N. Balasubramanian, Fahad Shahbaz Khan, Ling Shao:
Structured Latent Embeddings for Recognizing Unseen Classes in Unseen Domains. CoRR abs/2107.05622 (2021) - [i54]Puneet Mangla, Shivam Chandhok, Vineeth N. Balasubramanian, Fahad Shahbaz Khan:
Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen Domains. CoRR abs/2107.07497 (2021) - [i53]Anirban Sarkar, Deepak Vijaykeerthy, Anindya Sarkar, Vineeth N. Balasubramanian:
Inducing Semantic Grouping of Latent Concepts for Explanations: An Ante-Hoc Approach. CoRR abs/2108.11761 (2021) - [i52]Prachi Garg, Rohit Saluja, Vineeth N. Balasubramanian, Chetan Arora, Anbumani Subramanian, C. V. Jawahar:
Multi-Domain Incremental Learning for Semantic Segmentation. CoRR abs/2110.12205 (2021) - [i51]Anindya Sarkar, Anirban Sarkar, Sowrya Gali, Vineeth N. Balasubramanian:
Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided Curriculum Learning Approach. CoRR abs/2111.00295 (2021) - [i50]Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi:
Feature Generation for Long-tail Classification. CoRR abs/2111.05956 (2021) - [i49]Abbavaram Gowtham Reddy, Sai Srinivas Kancheti, Vineeth N. Balasubramanian, Amit Sharma:
Causal Regularization Using Domain Priors. CoRR abs/2111.12490 (2021) - [i48]Abbavaram Gowtham Reddy, Benin Godfrey L, Vineeth N. Balasubramanian:
On Causally Disentangled Representations. CoRR abs/2112.05746 (2021) - 2020
- [j8]Kee-Eung Kim, Vineeth N. Balasubramanian:
Foreword: special issue for the journal track of the 12th Asian conference on machine learning (ACML 2020). Mach. Learn. 109(12): 2243-2245 (2020) - [j7]Vaibhav B. Sinha, Sneha Kudugunta, Adepu Ravi Sankar, Surya Teja Chavali, Vineeth N. Balasubramanian:
DANTE: Deep alternations for training neural networks. Neural Networks 131: 127-143 (2020) - [c71]Udit Maniyar, K. J. Joseph, Aniket Anand Deshmukh, Ürün Dogan, Vineeth N. Balasubramanian:
Zero-Shot Domain Generalization. BMVC 2020 - [c70]Shyam Nandan Rai, Vineeth N. Balasubramanian, Anbumani Subramanian, C. V. Jawahar:
Spatial Feedback Learning to Improve Semantic Segmentation in Hot Weather. BMVC 2020 - [c69]Saurabh Ravindranath, Rahul Baburaj, Vineeth N. Balasubramanian, NageswaraRao Namburu, Sujit Gujar, C. V. Jawahar:
Human-Machine Collaboration for Face Recognition. COMAD/CODS 2020: 10-18 - [c68]Sai Vikas Desai, Vineeth N. Balasubramanian:
Towards Fine-grained Sampling for Active Learning in Object Detection. CVPR Workshops 2020: 4010-4014 - [c67]Mayank Singh, Nupur Kumari, Puneet Mangla, Abhishek Sinha, Vineeth N. Balasubramanian, Balaji Krishnamurthy:
Attributional Robustness Training Using Input-Gradient Spatial Alignment. ECCV (27) 2020: 515-533 - [c66]Sakshi Varshney, P. K. Srijith, Vineeth N. Balasubramanian:
STM-GAN: Sequentially Trained Multiple Generators for Mitigating Mode Collapse. ICONIP (5) 2020: 676-684