default search action
Marco Cuturi
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [c66]Tianyi Lin, Marco Cuturi, Michael I. Jordan:
A Specialized Semismooth Newton Method for Kernel-Based Optimal Transport. AISTATS 2024: 145-153 - [c65]Othmane Sebbouh, Marco Cuturi, Gabriel Peyré:
Structured Transforms Across Spaces with Cost-Regularized Optimal Transport. AISTATS 2024: 586-594 - [c64]Yu-Guan Hsieh, James Thornton, Eugène Ndiaye, Michal Klein, Marco Cuturi, Pierre Ablin:
Careful with that Scalpel: Improving Gradient Surgery with an EMA. ICML 2024 - [c63]Zoe Piran, Michal Klein, James Thornton, Marco Cuturi:
Contrasting Multiple Representations with the Multi-Marginal Matching Gap. ICML 2024 - [c62]Nina Vesseron, Marco Cuturi:
On a Neural Implementation of Brenier's Polar Factorization. ICML 2024 - [i70]Yu-Guan Hsieh, James Thornton, Eugène Ndiaye, Michal Klein, Marco Cuturi, Pierre Ablin:
Careful with that Scalpel: Improving Gradient Surgery with an EMA. CoRR abs/2402.02998 (2024) - [i69]Nina Vesseron, Marco Cuturi:
On a Neural Implementation of Brenier's Polar Factorization. CoRR abs/2403.03071 (2024) - [i68]Ben Blum-Smith, Ningyuan Huang, Marco Cuturi, Soledad Villar:
Learning functions on symmetric matrices and point clouds via lightweight invariant features. CoRR abs/2405.08097 (2024) - [i67]Antoine Wehenkel, Juan L. Gamella, Ozan Sener, Jens Behrmann, Guillermo Sapiro, Marco Cuturi, Jörn-Henrik Jacobsen:
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration. CoRR abs/2405.08719 (2024) - [i66]Zoe Piran, Michal Klein, James Thornton, Marco Cuturi:
Contrasting Multiple Representations with the Multi-Marginal Matching Gap. CoRR abs/2405.19532 (2024) - [i65]Parnian Kassraie, Aram-Alexandre Pooladian, Michal Klein, James Thornton, Jonathan Niles-Weed, Marco Cuturi:
Progressive Entropic Optimal Transport Solvers. CoRR abs/2406.05061 (2024) - [i64]Yu-Guan Hsieh, Cheng-Yu Hsieh, Shih-Ying Yeh, Louis Béthune, Hadipour Ansari, Pavan Kumar Anasosalu Vasu, Chun-Liang Li, Ranjay Krishna, Oncel Tuzel, Marco Cuturi:
Graph-Based Captioning: Enhancing Visual Descriptions by Interconnecting Region Captions. CoRR abs/2407.06723 (2024) - [i63]Théo Uscidda, Luca Eyring, Karsten Roth, Fabian J. Theis, Zeynep Akata, Marco Cuturi:
Disentangled Representation Learning through Geometry Preservation with the Gromov-Monge Gap. CoRR abs/2407.07829 (2024) - [i62]Michael Kirchhof, James Thornton, Pierre Ablin, Louis Béthune, Eugène Ndiaye, Marco Cuturi:
Sparse Repellency for Shielded Generation in Text-to-image Diffusion Models. CoRR abs/2410.06025 (2024) - [i61]Beomsu Kim, Yu-Guan Hsieh, Michal Klein, Marco Cuturi, Jong Chul Ye, Bahjat Kawar, James Thornton:
Simple ReFlow: Improved Techniques for Fast Flow Models. CoRR abs/2410.07815 (2024) - [i60]Pau Rodríguez López, Arno Blaas, Michal Klein, Luca Zappella, Nicholas Apostoloff, Marco Cuturi, Xavier Suau:
Controlling Language and Diffusion Models by Transporting Activations. CoRR abs/2410.23054 (2024) - 2023
- [c61]Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, Andreas Krause:
The Schrödinger Bridge between Gaussian Measures has a Closed Form. AISTATS 2023: 5802-5833 - [c60]James Thornton, Marco Cuturi:
Rethinking Initialization of the Sinkhorn Algorithm. AISTATS 2023: 8682-8698 - [c59]Marco Cuturi, Michal Klein, Pierre Ablin:
Monge, Bregman and Occam: Interpretable Optimal Transport in High-Dimensions with Feature-Sparse Maps. ICML 2023: 6671-6682 - [c58]Théo Uscidda, Marco Cuturi:
The Monge Gap: A Regularizer to Learn All Transport Maps. ICML 2023: 34709-34733 - [c57]Meyer Scetbon, Michal Klein, Giovanni Palla, Marco Cuturi:
Unbalanced Low-rank Optimal Transport Solvers. NeurIPS 2023 - [i59]Marco Cuturi, Michal Klein, Pierre Ablin:
Monge, Bregman and Occam: Interpretable Optimal Transport in High-Dimensions with Feature-Sparse Maps. CoRR abs/2302.04065 (2023) - [i58]Théo Uscidda, Marco Cuturi:
The Monge Gap: A Regularizer to Learn All Transport Maps. CoRR abs/2302.04953 (2023) - [i57]Meyer Scetbon, Michal Klein, Giovanni Palla, Marco Cuturi:
Unbalanced Low-rank Optimal Transport Solvers. CoRR abs/2305.19727 (2023) - [i56]Michal Klein, Aram-Alexandre Pooladian, Pierre Ablin, Eugène Ndiaye, Jonathan Niles-Weed, Marco Cuturi:
Learning Costs for Structured Monge Displacements. CoRR abs/2306.11895 (2023) - [i55]Antoine Wehenkel, Jens Behrmann, Andrew C. Miller, Guillermo Sapiro, Ozan Sener, Marco Cuturi, Jörn-Henrik Jacobsen:
Simulation-based Inference for Cardiovascular Models. CoRR abs/2307.13918 (2023) - [i54]Dominik Klein, Théo Uscidda, Fabian J. Theis, Marco Cuturi:
Generative Entropic Neural Optimal Transport To Map Within and Across Spaces. CoRR abs/2310.09254 (2023) - [i53]Tianyi Lin, Marco Cuturi, Michael I. Jordan:
A Specialized Semismooth Newton Method for Kernel-Based Optimal Transport. CoRR abs/2310.14087 (2023) - [i52]Othmane Sebbouh, Marco Cuturi, Gabriel Peyré:
Structured Transforms Across Spaces with Cost-Regularized Optimal Transport. CoRR abs/2311.05788 (2023) - 2022
- [j18]Tianyi Lin, Nhat Ho, Marco Cuturi, Michael I. Jordan:
On the Complexity of Approximating Multimarginal Optimal Transport. J. Mach. Learn. Res. 23: 65:1-65:43 (2022) - [c56]Othmane Sebbouh, Marco Cuturi, Gabriel Peyré:
Randomized Stochastic Gradient Descent Ascent. AISTATS 2022: 2941-2969 - [c55]Charlotte Bunne, Laetitia Papaxanthos, Andreas Krause, Marco Cuturi:
Proximal Optimal Transport Modeling of Population Dynamics. AISTATS 2022: 6511-6528 - [c54]Yingtao Tian, Marco Cuturi, David Ha:
Simultaneous Multiple-Prompt Guided Generation Using Differentiable Optimal Transport. ICCC 2022: 324-332 - [c53]Aram-Alexandre Pooladian, Marco Cuturi, Jonathan Niles-Weed:
Debiaser Beware: Pitfalls of Centering Regularized Transport Maps. ICML 2022: 17830-17847 - [c52]Meyer Scetbon, Gabriel Peyré, Marco Cuturi:
Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs. ICML 2022: 19347-19365 - [c51]Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian Pedregosa, Jean-Philippe Vert:
Efficient and Modular Implicit Differentiation. NeurIPS 2022 - [c50]Charlotte Bunne, Andreas Krause, Marco Cuturi:
Supervised Training of Conditional Monge Maps. NeurIPS 2022 - [c49]Meyer Scetbon, Marco Cuturi:
Low-rank Optimal Transport: Approximation, Statistics and Debiasing. NeurIPS 2022 - [i51]Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, Olivier Teboul:
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein. CoRR abs/2201.12324 (2022) - [i50]Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, Andreas Krause:
Recovering Stochastic Dynamics via Gaussian Schrödinger Bridges. CoRR abs/2202.05722 (2022) - [i49]Hicham Janati, Marco Cuturi, Alexandre Gramfort:
Averaging Spatio-temporal Signals using Optimal Transport and Soft Alignments. CoRR abs/2203.05813 (2022) - [i48]Yingtao Tian, Marco Cuturi, David Ha:
Simultaneous Multiple-Prompt Guided Generation Using Differentiable Optimal Transport. CoRR abs/2204.08472 (2022) - [i47]Meyer Scetbon, Marco Cuturi:
Low-rank Optimal Transport: Approximation, Statistics and Debiasing. CoRR abs/2205.12365 (2022) - [i46]James Thornton, Marco Cuturi:
Rethinking Initialization of the Sinkhorn Algorithm. CoRR abs/2206.07630 (2022) - [i45]Charlotte Bunne, Andreas Krause, Marco Cuturi:
Supervised Training of Conditional Monge Maps. CoRR abs/2206.14262 (2022) - 2021
- [j17]Matthieu Heitz, Nicolas Bonneel, David Coeurjolly, Marco Cuturi, Gabriel Peyré:
Ground Metric Learning on Graphs. J. Math. Imaging Vis. 63(1): 89-107 (2021) - [c48]Tianyi Lin, Zeyu Zheng, Elynn Y. Chen, Marco Cuturi, Michael I. Jordan:
On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification. AISTATS 2021: 262-270 - [c47]Meyer Scetbon, Laurent Meunier, Jamal Atif, Marco Cuturi:
Equitable and Optimal Transport with Multiple Agents. AISTATS 2021: 2035-2043 - [c46]Meyer Scetbon, Marco Cuturi, Gabriel Peyré:
Low-Rank Sinkhorn Factorization. ICML 2021: 9344-9354 - [i44]Meyer Scetbon, Marco Cuturi, Gabriel Peyré:
Low-Rank Sinkhorn Factorization. CoRR abs/2103.04737 (2021) - [i43]Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-López, Fabian Pedregosa, Jean-Philippe Vert:
Efficient and Modular Implicit Differentiation. CoRR abs/2105.15183 (2021) - [i42]Meyer Scetbon, Gabriel Peyré, Marco Cuturi:
Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs. CoRR abs/2106.01128 (2021) - [i41]Charlotte Bunne, Laetitia Meng-Papaxanthos, Andreas Krause, Marco Cuturi:
JKOnet: Proximal Optimal Transport Modeling of Population Dynamics. CoRR abs/2106.06345 (2021) - [i40]Othmane Sebbouh, Marco Cuturi, Gabriel Peyré:
Randomized Stochastic Gradient Descent Ascent. CoRR abs/2111.13162 (2021) - 2020
- [j16]Hicham Janati, Thomas Bazeille, Bertrand Thirion, Marco Cuturi, Alexandre Gramfort:
Multi-subject MEG/EEG source imaging with sparse multi-task regression. NeuroImage 220: 116847 (2020) - [c45]François-Pierre Paty, Alexandre d'Aspremont, Marco Cuturi:
Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport. AISTATS 2020: 1222-1232 - [c44]Hicham Janati, Marco Cuturi, Alexandre Gramfort:
Spatio-temporal alignments: Optimal transport through space and time. AISTATS 2020: 1695-1704 - [c43]Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem, Olivier Bousquet, Sylvain Gelly:
Precision-Recall Curves Using Information Divergence Frontiers. AISTATS 2020: 2550-2559 - [c42]Marco Cuturi, Olivier Teboul, Jonathan Niles-Weed, Jean-Philippe Vert:
Supervised Quantile Normalization for Low Rank Matrix Factorization. ICML 2020: 2269-2279 - [c41]Hicham Janati, Marco Cuturi, Alexandre Gramfort:
Debiased Sinkhorn barycenters. ICML 2020: 4692-4701 - [c40]Boris Muzellec, Julie Josse, Claire Boyer, Marco Cuturi:
Missing Data Imputation using Optimal Transport. ICML 2020: 7130-7140 - [c39]François-Pierre Paty, Marco Cuturi:
Regularized Optimal Transport is Ground Cost Adversarial. ICML 2020: 7532-7542 - [c38]Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, Francis R. Bach:
Learning with Differentiable Pertubed Optimizers. NeurIPS 2020 - [c37]Hicham Janati, Boris Muzellec, Gabriel Peyré, Marco Cuturi:
Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form. NeurIPS 2020 - [c36]Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, Michael I. Jordan:
Projection Robust Wasserstein Distance and Riemannian Optimization. NeurIPS 2020 - [c35]Tianyi Lin, Nhat Ho, Xi Chen, Marco Cuturi, Michael I. Jordan:
Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm. NeurIPS 2020 - [c34]Meyer Scetbon, Marco Cuturi:
Linear Time Sinkhorn Divergences using Positive Features. NeurIPS 2020 - [i39]Ryoma Sato, Marco Cuturi, Makoto Yamada, Hisashi Kashima:
Fast and Robust Comparison of Probability Measures in Heterogeneous Spaces. CoRR abs/2002.01615 (2020) - [i38]Marco Cuturi, Olivier Teboul, Jonathan Niles-Weed, Jean-Philippe Vert:
Supervised Quantile Normalization for Low-rank Matrix Approximation. CoRR abs/2002.03229 (2020) - [i37]Boris Muzellec, Julie Josse, Claire Boyer, Marco Cuturi:
Missing Data Imputation using Optimal Transport. CoRR abs/2002.03860 (2020) - [i36]François-Pierre Paty, Marco Cuturi:
Regularized Optimal Transport is Ground Cost Adversarial. CoRR abs/2002.03967 (2020) - [i35]Tianyi Lin, Nhat Ho, Xi Chen, Marco Cuturi, Michael I. Jordan:
Revisiting Fixed Support Wasserstein Barycenter: Computational Hardness and Efficient Algorithms. CoRR abs/2002.04783 (2020) - [i34]Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, Francis R. Bach:
Learning with Differentiable Perturbed Optimizers. CoRR abs/2002.08676 (2020) - [i33]Marco Cuturi, Olivier Teboul, Jean-Philippe Vert:
Noisy Adaptive Group Testing using Bayesian Sequential Experimental Design. CoRR abs/2004.12508 (2020) - [i32]Hicham Janati, Marco Cuturi, Alexandre Gramfort:
Debiased Sinkhorn barycenters. CoRR abs/2006.02575 (2020) - [i31]Meyer Scetbon, Marco Cuturi:
Linear Time Sinkhorn Divergences using Positive Features. CoRR abs/2006.07057 (2020) - [i30]Meyer Scetbon, Laurent Meunier, Jamal Atif, Marco Cuturi:
Handling Multiple Costs in Optimal Transport: Strong Duality and Efficient Computation. CoRR abs/2006.07260 (2020) - [i29]Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, Michael I. Jordan:
Projection Robust Wasserstein Distance and Riemannian Optimization. CoRR abs/2006.07458 (2020) - [i28]Tianyi Lin, Zeyu Zheng, Elynn Y. Chen, Marco Cuturi, Michael I. Jordan:
On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification. CoRR abs/2006.12301 (2020)
2010 – 2019
- 2019
- [j15]Gabriel Peyré, Marco Cuturi:
Computational Optimal Transport. Found. Trends Mach. Learn. 11(5-6): 355-607 (2019) - [j14]Shun-ichi Amari, Ryo Karakida, Masafumi Oizumi, Marco Cuturi:
Information Geometry for Regularized Optimal Transport and Barycenters of Patterns. Neural Comput. 31(5): 827-848 (2019) - [c33]Hicham Janati, Marco Cuturi, Alexandre Gramfort:
Wasserstein regularization for sparse multi-task regression. AISTATS 2019: 1407-1416 - [c32]Aude Genevay, Lénaïc Chizat, Francis R. Bach, Marco Cuturi, Gabriel Peyré:
Sample Complexity of Sinkhorn Divergences. AISTATS 2019: 1574-1583 - [c31]Jean Alaux, Edouard Grave, Marco Cuturi, Armand Joulin:
Unsupervised Hyper-alignment for Multilingual Word Embeddings. ICLR (Poster) 2019 - [c30]Gwendoline de Bie, Gabriel Peyré, Marco Cuturi:
Stochastic Deep Networks. ICML 2019: 1556-1565 - [c29]François-Pierre Paty, Marco Cuturi:
Subspace Robust Wasserstein Distances. ICML 2019: 5072-5081 - [c28]Hicham Janati, Thomas Bazeille, Bertrand Thirion, Marco Cuturi, Alexandre Gramfort:
Group Level MEG/EEG Source Imaging via Optimal Transport: Minimum Wasserstein Estimates. IPMI 2019: 743-754 - [c27]Marco Cuturi, Olivier Teboul, Jean-Philippe Vert:
Differentiable Ranking and Sorting using Optimal Transport. NeurIPS 2019: 6858-6868 - [c26]Boris Muzellec, Marco Cuturi:
Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections. NeurIPS 2019: 6914-6925 - [c25]Tam Le, Makoto Yamada, Kenji Fukumizu, Marco Cuturi:
Tree-Sliced Variants of Wasserstein Distances. NeurIPS 2019: 12283-12294 - [i27]François-Pierre Paty, Marco Cuturi:
Subspace Robust Wasserstein distances. CoRR abs/1901.08949 (2019) - [i26]Tam Le, Makoto Yamada, Kenji Fukumizu, Marco Cuturi:
Tree-Sliced Approximation of Wasserstein Distances. CoRR abs/1902.00342 (2019) - [i25]Hicham Janati, Thomas Bazeille, Bertrand Thirion, Marco Cuturi, Alexandre Gramfort:
Group level MEG/EEG source imaging via optimal transport: minimum Wasserstein estimates. CoRR abs/1902.04812 (2019) - [i24]Boris Muzellec, Marco Cuturi:
Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections. CoRR abs/1905.10099 (2019) - [i23]Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem, Olivier Bousquet, Sylvain Gelly:
Evaluating Generative Models Using Divergence Frontiers. CoRR abs/1905.10768 (2019) - [i22]François-Pierre Paty, Alexandre d'Aspremont, Marco Cuturi:
Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport. CoRR abs/1905.10812 (2019) - [i21]Marco Cuturi, Olivier Teboul, Jean-Philippe Vert:
Differentiable Sorting using Optimal Transport: The Sinkhorn CDF and Quantile Operator. CoRR abs/1905.11885 (2019) - [i20]Gabriel Dulac-Arnold, Neil Zeghidour, Marco Cuturi, Lucas Beyer, Jean-Philippe Vert:
Deep multi-class learning from label proportions. CoRR abs/1905.12909 (2019) - [i19]Tianyi Lin, Nhat Ho, Marco Cuturi, Michael I. Jordan:
On the Complexity of Approximating Multimarginal Optimal Transport. CoRR abs/1910.00152 (2019) - [i18]Hicham Janati, Thomas Bazeille, Bertrand Thirion, Marco Cuturi, Alexandre Gramfort:
Multi-subject MEG/EEG source imaging with sparse multi-task regression. CoRR abs/1910.01914 (2019) - [i17]Hicham Janati, Marco Cuturi, Alexandre Gramfort:
Spatio-Temporal Alignments: Optimal transport through space and time. CoRR abs/1910.03860 (2019) - [i16]Matthieu Heitz, Nicolas Bonneel, David Coeurjolly, Marco Cuturi, Gabriel Peyré:
Ground Metric Learning on Graphs. CoRR abs/1911.03117 (2019) - 2018
- [j13]Rémi Flamary, Marco Cuturi, Nicolas Courty, Alain Rakotomamonjy:
Wasserstein discriminant analysis. Mach. Learn. 107(12): 1923-1945 (2018) - [j12]Morgan A. Schmitz, Matthieu Heitz, Nicolas Bonneel, Fred Maurice Ngolè Mboula, David Coeurjolly, Marco Cuturi, Gabriel Peyré, Jean-Luc Starck:
Wasserstein Dictionary Learning: Optimal Transport-Based Unsupervised Nonlinear Dictionary Learning. SIAM J. Imaging Sci. 11(1): 643-678 (2018) - [j11]Marco Cuturi, Gabriel Peyré:
Semidual Regularized Optimal Transport. SIAM Rev. 60(4): 941-965 (2018) - [j10]Elsa Cazelles, Vivien Seguy, Jérémie Bigot, Marco Cuturi, Nicolas Papadakis:
Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space. SIAM J. Sci. Comput. 40(2) (2018) - [c24]Aude Genevay, Gabriel Peyré, Marco Cuturi:
Learning Generative Models with Sinkhorn Divergences. AISTATS 2018: 1608-1617 - [c23]Théo Lacombe, Marco Cuturi, Steve Oudot:
Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport. NeurIPS 2018: 9792-9802 - [c22]Boris Muzellec, Marco Cuturi:
Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions. NeurIPS 2018: 10258-10269 - [i15]Boris Muzellec, Marco Cuturi:
Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions. CoRR abs/1805.07594 (2018) - [i14]Hicham Janati, Marco Cuturi, Alexandre Gramfort:
Wasserstein regularization for sparse multi-task regression. CoRR abs/1805.07833 (2018) - [i13]Théo Lacombe, Marco Cuturi, Steve Oudot:
Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport. CoRR abs/1805.08331 (2018) - [i12]Jean Alaux, Edouard Grave, Marco Cuturi, Armand Joulin:
Unsupervised Hyperalignment for Multilingual Word Embeddings. CoRR abs/1811.01124 (2018) - [i11]Marco Cuturi, Gabriel Peyré:
Semi-dual Regularized Optimal Transport. CoRR abs/1811.05527 (2018) - [i10]Gwendoline de Bie, Gabriel Peyré, Marco Cuturi:
Stochastic Deep Networks. CoRR abs/1811.07429 (2018) - 2017
- [j9]Aaditya Ramdas, Nicolás García Trillos, Marco Cuturi:
On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests. Entropy 19(2): 47 (2017) - [c21]Mathieu Carrière, Marco Cuturi, Steve Oudot:
Sliced Wasserstein Kernel for Persistence Diagrams. ICML 2017: 664-673 - [c20]Marco Cuturi, Mathieu Blondel:
Soft-DTW: a Differentiable Loss Function for Time-Series. ICML 2017: 894-903 - [e1]Oren Anava, Azadeh Khaleghi, Marco Cuturi, Vitaly Kuznetsov, Alexander Rakhlin:
Proceedings of the NIPS 2016 Time Series Workshop, co-located with the 30th Annual Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, December 9, 2016. JMLR Workshop and Conference Proceedings 55, JMLR.org 2017 [contents] - [i9]Mathieu Carrière, Marco Cuturi, Steve Oudot:
Sliced Wasserstein Kernel for Persistence Diagrams. CoRR abs/1706.03358 (2017) - [i8]Morgan A. Schmitz, Matthieu Heitz, Nicolas Bonneel, Fred Maurice Ngolè Mboula, David Coeurjolly, Marco Cuturi, Gabriel Peyré, Jean-Luc Starck:
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning. CoRR abs/1708.01955 (2017) - 2016
- [j8]Marco Cuturi, Gabriel Peyré:
A Smoothed Dual Approach for Variational Wasserstein Problems. SIAM J. Imaging Sci. 9(1): 320-343 (2016) - [j7]