


Остановите войну!
for scientists:
Michael Kearns
Michael J. Kearns – Michael S. Kearns
Person information

- affiliation: Department of Computer and Information Science, University of Pennsylvania
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [i45]Ira Globus-Harris, Michael Kearns, Aaron Roth:
Beyond the Frontier: Fairness Without Accuracy Loss. CoRR abs/2201.10408 (2022) - [i44]Aditya Golatkar, Alessandro Achille, Yu-Xiang Wang, Aaron Roth, Michael Kearns, Stefano Soatto:
Mixed Differential Privacy in Computer Vision. CoRR abs/2203.11481 (2022) - 2021
- [c139]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth:
Minimax Group Fairness: Algorithms and Experiments. AIES 2021: 66-76 - [c138]Christopher Jung, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, Zhiwei Steven Wu:
An Algorithmic Framework for Fairness Elicitation. FORC 2021: 2:1-2:19 - [c137]Emily Diana, Wesley Gill, Ira Globus-Harris, Michael Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi:
Lexicographically Fair Learning: Algorithms and Generalization. FORC 2021: 6:1-6:23 - [c136]Sergül Aydöre, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron Roth, Ankit A. Siva:
Differentially Private Query Release Through Adaptive Projection. ICML 2021: 457-467 - [c135]Emily Diana, Travis Dick, Hadi Elzayn, Michael Kearns, Aaron Roth, Zachary Schutzman, Saeed Sharifi-Malvajerdi, Juba Ziani:
Algorithms and Learning for Fair Portfolio Design. EC 2021: 371-389 - [i43]Emily Diana, Wesley Gill, Ira Globus-Harris, Michael Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi:
Lexicographically Fair Learning: Algorithms and Generalization. CoRR abs/2102.08454 (2021) - [i42]Sergül Aydöre, William Brown, Michael Kearns, Krishnaram Kenthapadi, Luca Melis, Aaron Roth, Ankit A. Siva
:
Differentially Private Query Release Through Adaptive Projection. CoRR abs/2103.06641 (2021) - [i41]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth, Saeed Sharifi-Malvajerdi:
Multiaccurate Proxies for Downstream Fairness. CoRR abs/2107.04423 (2021) - 2020
- [j38]Michael Kearns, Aaron Roth:
Ethical algorithm design. SIGecom Exch. 18(1): 31-36 (2020) - [c134]Emily Diana, Michael Kearns, Seth Neel, Aaron Roth:
Optimal, truthful, and private securities lending. ICAIF 2020: 48:1-48:8 - [c133]Emily Diana, Hadi Elzayn, Michael Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi, Juba Ziani:
Differentially Private Call Auctions and Market Impact. EC 2020: 541-583 - [i40]Emily Diana, Hadi Elzayn, Michael J. Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi, Juba Ziani:
Differentially Private Call Auctions and Market Impact. CoRR abs/2002.05699 (2020) - [i39]Emily Diana, Travis Dick, Hadi Elzayn, Michael J. Kearns, Aaron Roth, Zachary Schutzman, Saeed Sharifi-Malvajerdi, Juba Ziani:
Algorithms and Learning for Fair Portfolio Design. CoRR abs/2006.07281 (2020) - [i38]Yiling Chen, Arpita Ghosh, Michael Kearns, Tim Roughgarden, Jennifer Wortman Vaughan:
Mathematical Foundations for Social Computing. CoRR abs/2007.03661 (2020) - [i37]Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, Aaron Roth:
Convergent Algorithms for (Relaxed) Minimax Fairness. CoRR abs/2011.03108 (2020)
2010 – 2019
- 2019
- [j37]Sanjeev Goyal, Hoda Heidari, Michael J. Kearns:
Competitive contagion in networks. Games Econ. Behav. 113: 58-79 (2019) - [c132]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
An Empirical Study of Rich Subgroup Fairness for Machine Learning. FAT 2019: 100-109 - [c131]Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth, Zachary Schutzman
:
Fair Algorithms for Learning in Allocation Problems. FAT 2019: 170-179 - [c130]Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, Jonathan R. Ullman:
Differentially Private Fair Learning. ICML 2019: 3000-3008 - [c129]Yu Chen, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Network Formation under Random Attack and Probabilistic Spread. IJCAI 2019: 180-186 - [c128]Jinshuo Dong, Hadi Elzayn, Shahin Jabbari, Michael J. Kearns, Zachary Schutzman
:
Equilibrium Characterization for Data Acquisition Games. IJCAI 2019: 252-258 - [c127]Saeed Sharifi-Malvajerdi, Michael J. Kearns, Aaron Roth:
Average Individual Fairness: Algorithms, Generalization and Experiments. NeurIPS 2019: 8240-8249 - [i36]Jinshuo Dong, Hadi Elzayn, Shahin Jabbari, Michael J. Kearns, Zachary Schutzman
:
Equilibrium Characterization for Data Acquisition Games. CoRR abs/1905.08909 (2019) - [i35]Michael J. Kearns, Aaron Roth, Saeed Sharifi-Malvajerdi:
Average Individual Fairness: Algorithms, Generalization and Experiments. CoRR abs/1905.10607 (2019) - [i34]Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth, Logan Stapleton, Zhiwei Steven Wu:
Eliciting and Enforcing Subjective Individual Fairness. CoRR abs/1905.10660 (2019) - [i33]Yu Chen, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Network Formation under Random Attack and Probabilistic Spread. CoRR abs/1906.00241 (2019) - [i32]Emily Diana, Michael J. Kearns, Seth Neel, Aaron Roth:
Optimal, Truthful, and Private Securities Lending. CoRR abs/1912.06202 (2019) - 2018
- [c126]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
Meritocratic Fairness for Infinite and Contextual Bandits. AIES 2018: 158-163 - [c125]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness. ICML 2018: 2569-2577 - [c124]Stephen Gillen, Christopher Jung, Michael J. Kearns, Aaron Roth:
Online Learning with an Unknown Fairness Metric. NeurIPS 2018: 2605-2614 - [i31]Stephen Gillen, Christopher Jung, Michael J. Kearns, Aaron Roth:
Online Learning with an Unknown Fairness Metric. CoRR abs/1802.06936 (2018) - [i30]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
An Empirical Study of Rich Subgroup Fairness for Machine Learning. CoRR abs/1808.08166 (2018) - [i29]Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael J. Kearns, Seth Neel, Aaron Roth, Zachary Schutzman
:
Fair Algorithms for Learning in Allocation Problems. CoRR abs/1808.10549 (2018) - [i28]Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea, Aaron Roth, Saeed Sharifi-Malvajerdi, Jonathan R. Ullman:
Differentially Private Fair Learning. CoRR abs/1812.02696 (2018) - 2017
- [c123]Michael J. Kearns, Zhiwei Steven Wu:
Predicting with Distributions. COLT 2017: 1214-1241 - [c122]Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Reinforcement Learning. ICML 2017: 1617-1626 - [c121]Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu:
Meritocratic Fairness for Cross-Population Selection. ICML 2017: 1828-1836 - [c120]Michael J. Kearns:
Fair Algorithms for Machine Learning. EC 2017: 1 - [c119]Sampath Kannan, Michael J. Kearns, Jamie Morgenstern, Mallesh M. Pai, Aaron Roth, Rakesh V. Vohra, Zhiwei Steven Wu:
Fairness Incentives for Myopic Agents. EC 2017: 369-386 - [i27]Sampath Kannan, Michael J. Kearns, Jamie Morgenstern, Mallesh M. Pai, Aaron Roth, Rakesh V. Vohra, Zhiwei Steven Wu:
Fairness Incentives for Myopic Agents. CoRR abs/1705.02321 (2017) - [i26]Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
A Convex Framework for Fair Regression. CoRR abs/1706.02409 (2017) - [i25]Michael J. Kearns, Seth Neel, Aaron Roth, Zhiwei Steven Wu:
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness. CoRR abs/1711.05144 (2017) - 2016
- [j36]Yiling Chen, Arpita Ghosh, Michael J. Kearns, Tim Roughgarden, Jennifer Wortman Vaughan:
Mathematical foundations for social computing. Commun. ACM 59(12): 102-108 (2016) - [j35]Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu, Grigory Yaroslavtsev:
Private algorithms for the protected in social network search. Proc. Natl. Acad. Sci. USA 113(4): 913-918 (2016) - [c118]Hoda Heidari, Michael J. Kearns, Aaron Roth:
Tight Policy Regret Bounds for Improving and Decaying Bandits. IJCAI 2016: 1562-1570 - [c117]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Learning: Classic and Contextual Bandits. NIPS 2016: 325-333 - [c116]Sanjeev Goyal, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Strategic Network Formation with Attack and Immunization. WINE 2016: 429-443 - [i24]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fairness in Learning: Classic and Contextual Bandits. CoRR abs/1605.07139 (2016) - [i23]Michael J. Kearns, Zhiwei Steven Wu:
Predicting with Distributions. CoRR abs/1606.01275 (2016) - [i22]Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel, Aaron Roth:
Rawlsian Fairness for Machine Learning. CoRR abs/1610.09559 (2016) - [i21]Shahin Jabbari, Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Aaron Roth:
Fair Learning in Markovian Environments. CoRR abs/1611.03071 (2016) - 2015
- [c115]Kareem Amin, Rachel Cummings, Lili Dworkin, Michael J. Kearns, Aaron Roth:
Online Learning and Profit Maximization from Revealed Preferences. AAAI 2015: 770-776 - [c114]Lili Dworkin, Michael J. Kearns:
From "In" to "Over": Behavioral Experiments on Whole-Network Computation. HCOMP 2015: 52-61 - [c113]Rachel Cummings, Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu:
Privacy and Truthful Equilibrium Selection for Aggregative Games. WINE 2015: 286-299 - [i20]Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu, Grigory Yaroslavtsev:
Privacy for the Protected (Only). CoRR abs/1506.00242 (2015) - [i19]Sanjeev Goyal, Shahin Jabbari, Michael J. Kearns, Sanjeev Khanna, Jamie Morgenstern:
Strategic Network Formation with Attack and Immunization. CoRR abs/1511.05196 (2015) - [i18]Michael J. Kearns, Mallesh M. Pai, Ryan M. Rogers, Aaron Roth, Jonathan R. Ullman:
Robust Mediators in Large Games. CoRR abs/1512.02698 (2015) - 2014
- [c112]Moez Draief, Hoda Heidari, Michael J. Kearns:
New Models for Competitive Contagion. AAAI 2014: 637-644 - [c111]Lili Dworkin, Michael J. Kearns, Lirong Xia:
Efficient Inference for Complex Queries on Complex Distributions. AISTATS 2014: 211-219 - [c110]Lili Dworkin, Michael J. Kearns, Yuriy Nevmyvaka:
Pursuit-Evasion Without Regret, with an Application to Trading. ICML 2014: 1521-1529 - [c109]Kareem Amin, Hoda Heidari, Michael J. Kearns:
Learning from Contagion (Without Timestamps). ICML 2014: 1845-1853 - [c108]Michael J. Kearns, Mallesh M. Pai, Aaron Roth, Jonathan R. Ullman:
Mechanism design in large games: incentives and privacy. ITCS 2014: 403-410 - [i17]Michael J. Kearns, Lili Dworkin:
A Computational Study of Feasible Repackings in the FCC Incentive Auctions. CoRR abs/1406.4837 (2014) - [i16]Kareem Amin, Rachel Cummings, Lili Dworkin, Michael J. Kearns, Aaron Roth:
Online Learning and Profit Maximization from Revealed Preferences. CoRR abs/1407.7294 (2014) - [i15]Rachel Cummings, Michael J. Kearns, Aaron Roth, Zhiwei Steven Wu:
Privacy and Truthful Equilibrium Selection for Aggregative Games. CoRR abs/1407.7740 (2014) - 2013
- [c107]Hoda Heidari, Michael J. Kearns:
Depth-Workload Tradeoffs for Workforce Organization. HCOMP 2013 - [c106]Jacob D. Abernethy, Kareem Amin, Michael J. Kearns, Moez Draief:
Large-Scale Bandit Problems and KWIK Learning. ICML (1) 2013: 588-596 - [c105]Tim Roughgarden, Michael J. Kearns:
Marginals-to-Models Reducibility. NIPS 2013: 1043-1051 - [e6]Michael J. Kearns, R. Preston McAfee, Éva Tardos:
Proceedings of the fourteenth ACM Conference on Electronic Commerce, EC 2013, Philadelphia, PA, USA, June 16-20, 2013. ACM 2013, ISBN 978-1-4503-1962-1 [contents] - [i14]Michael J. Kearns, Yishay Mansour:
Efficient Nash Computation in Large Population Games with Bounded Influence. CoRR abs/1301.0577 (2013) - [i13]Michael J. Kearns, Michael L. Littman, Satinder Singh:
Graphical Models for Game Theory. CoRR abs/1301.2281 (2013) - [i12]Michael J. Kearns, Yishay Mansour, Satinder Singh:
Fast Planning in Stochastic Games. CoRR abs/1301.3867 (2013) - [i11]Satinder Singh, Michael J. Kearns, Yishay Mansour:
Nash Convergence of Gradient Dynamics in Iterated General-Sum Games. CoRR abs/1301.3892 (2013) - [i10]Michael J. Kearns, Yishay Mansour:
Exact Inference of Hidden Structure from Sample Data in Noisy-OR Networks. CoRR abs/1301.7391 (2013) - [i9]Michael J. Kearns, Lawrence K. Saul:
Large Deviation Methods for Approximate Probabilistic Inference. CoRR abs/1301.7392 (2013) - [i8]Michael J. Kearns, Yishay Mansour, Andrew Y. Ng:
An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering. CoRR abs/1302.1552 (2013) - 2012
- [j34]Michael J. Kearns:
Experiments in social computation. Commun. ACM 55(10): 56-67 (2012) - [c104]Quang Duong, Michael P. Wellman, Satinder Singh, Michael J. Kearns:
Learning and predicting dynamic networked behavior with graphical multiagent models. AAMAS 2012: 441-448 - [c103]Michael J. Kearns:
Experiments in social computation: (and the data they generate). KDD 2012: 5 - [c102]Michael J. Kearns, J. Stephen Judd, Yevgeniy Vorobeychik
:
Behavioral experiments on a network formation game. EC 2012: 690-704 - [c101]Sanjeev Goyal, Michael J. Kearns:
Competitive contagion in networks. STOC 2012: 759-774 - [c100]Kareem Amin, Michael J. Kearns, Peter B. Key, Anton Schwaighofer:
Budget Optimization for Sponsored Search: Censored Learning in MDPs. UAI 2012: 54-63 - [c99]Pushmeet Kohli, Michael J. Kearns, Yoram Bachrach, Ralf Herbrich, David Stillwell, Thore Graepel:
Colonel Blotto on Facebook: the effect of social relations on strategic interaction. WebSci 2012: 141-150 - [i7]Kareem Amin, Michael J. Kearns, Umar Syed:
Graphical Models for Bandit Problems. CoRR abs/1202.3782 (2012) - [i6]Kuzman Ganchev, Michael J. Kearns, Yuriy Nevmyvaka, Jennifer Wortman Vaughan:
Censored Exploration and the Dark Pool Problem. CoRR abs/1205.2646 (2012) - [i5]Kareem Amin, Michael J. Kearns, Peter B. Key, Anton Schwaighofer:
Budget Optimization for Sponsored Search: Censored Learning in MDPs. CoRR abs/1210.4847 (2012) - 2011
- [c98]Michael Brautbar, Michael J. Kearns:
A Clustering Coefficient Network Formation Game. SAGT 2011: 224-235 - [c97]Tanmoy Chakraborty, Michael J. Kearns:
Market making and mean reversion. EC 2011: 307-314 - [c96]Kareem Amin, Michael J. Kearns, Umar Syed:
Graphical Models for Bandit Problems. UAI 2011: 1-10 - [c95]J. Stephen Judd, Michael J. Kearns, Yevgeniy Vorobeychik:
Behavioral Conflict and Fairness in Social Networks. WINE 2011: 242-253 - [c94]Kareem Amin, Michael J. Kearns, Umar Syed:
Bandits, Query Learning, and the Haystack Dimension. COLT 2011: 87-106 - [i4]Michael J. Kearns, Diane J. Litman, Satinder Singh, Marilyn A. Walker:
Optimizing Dialogue Management with Reinforcement Learning: Experiments with the NJFun System. CoRR abs/1106.0676 (2011) - [i3]Michael J. Kearns, Michael L. Littman, Satinder Singh, Peter Stone:
ATTac-2000: An Adaptive Autonomous Bidding Agent. CoRR abs/1106.0678 (2011) - [i2]Sanjeev Goyal, Michael J. Kearns:
Competitive Contagion in Networks. CoRR abs/1110.6372 (2011) - 2010
- [j33]Kuzman Ganchev, Yuriy Nevmyvaka, Michael J. Kearns, Jennifer Wortman Vaughan:
Censored exploration and the dark pool problem. Commun. ACM 53(5): 99-107 (2010) - [j32]J. Stephen Judd, Michael J. Kearns, Yevgeniy Vorobeychik
:
Behavioral dynamics and influence in networked coloring and consensus. Proc. Natl. Acad. Sci. USA 107(34): 14978-14982 (2010) - [c93]Mickey Brautbar, Michael J. Kearns, Umar Syed:
Private and Third-Party Randomization in Risk-Sensitive Equilibrium Concepts. AAAI 2010 - [c92]Mickey Brautbar, Michael J. Kearns:
Local Algorithms for Finding Interesting Individuals in Large Networks. ICS 2010: 188-199 - [c91]Tanmoy Chakraborty, J. Stephen Judd, Michael J. Kearns, Jinsong Tan:
A behavioral study of bargaining in social networks. EC 2010: 243-252 - [i1]Mickey Brautbar, Michael J. Kearns:
A Clustering Coefficient Network Formation Game. CoRR abs/1010.1561 (2010)
2000 – 2009
- 2009
- [j31]Michael J. Kearns, J. Stephen Judd, Jinsong Tan, Jennifer Wortman:
Behavioral experiments on biased voting in networks. Proc. Natl. Acad. Sci. USA 106(5): 1347-1352 (2009) - [c90]Tanmoy Chakraborty, Michael J. Kearns, Sanjeev Khanna:
Network bargaining: algorithms and structural results. EC 2009: 159-168 - [c89]Kuzman Ganchev, Michael J. Kearns, Yuriy Nevmyvaka, Jennifer Wortman Vaughan:
Censored Exploration and the Dark Pool Problem. UAI 2009: 185-194 - 2008
- [j30]Koby Crammer, Michael J. Kearns, Jennifer Wortman:
Learning from Multiple Sources. J. Mach. Learn. Res. 9: 1757-1774 (2008) - [j29]Eyal Even-Dar, Michael J. Kearns, Yishay Mansour, Jennifer Wortman:
Regret to the best vs. regret to the average. Mach. Learn. 72(1-2): 21-37 (2008) - [c88]Michael J. Kearns, Jennifer Wortman:
Learning from Collective Behavior. COLT 2008: 99-110 - [c87]J. Stephen Judd, Michael J. Kearns:
Behavioral experiments in networked trade. EC 2008: 150-159 - [c86]Tanmoy Chakraborty, Michael J. Kearns:
Bargaining Solutions in a Social Network. WINE 2008: 548-555 - [c85]Michael J. Kearns, Jinsong Tan:
Biased Voting and the Democratic Primary Problem. WINE 2008: 639-652 - 2007
- [c84]Eyal Even-Dar, Michael J. Kearns, Yishay Mansour, Jennifer Wortman:
Regret to the Best vs. Regret to the Average. COLT 2007: 233-247 - [c83]Michael J. Kearns, Jinsong Tan, Jennifer Wortman:
Privacy-Preserving Belief Propagation and Sampling. NIPS 2007: 745-752 - [c82]Eyal Even-Dar, Michael J. Kearns, Siddharth Suri:
A network formation game for bipartite exchange economies. SODA 2007: 697-706 - [c81]Eyal Even-Dar, Michael J. Kearns, Jennifer Wortman:
Sponsored Search with Contexts. WINE 2007: 312-317 - [c80]Kuzman Ganchev, Alex Kulesza, Jinsong Tan, Ryan Gabbard, Qian Liu, Michael J. Kearns:
Empirical Price Modeling for Sponsored Search. WINE 2007: 541-548 - 2006
- [j28]Charles Lee Isbell Jr., Michael J. Kearns, Satinder Singh, Christian R. Shelton
, Peter Stone, David P. Kormann:
Cobot in LambdaMOO: An Adaptive Social Statistics Agent. Auton. Agents Multi Agent Syst. 13(3): 327-354 (2006) - [c79]Eyal Even-Dar, Michael J. Kearns, Jennifer Wortman:
Risk-Sensitive Online Learning. ALT 2006: 199-213 - [c78]Yuriy Nevmyvaka, Yi Feng, Michael J. Kearns:
Reinforcement learning for optimized trade execution. ICML 2006: 673-680 - [c77]Koby Crammer, Michael J. Kearns, Jennifer Wortman:
Learning from Multiple Sources. NIPS 2006: 321-328 - [c76]Eyal Even-Dar, Michael J. Kearns:
A Small World Threshold for Economic Network Formation. NIPS 2006: 385-392 - [c75]Eyal Even-Dar, Sham M. Kakade, Michael J. Kearns, Yishay Mansour:
(In)Stability properties of limit order dynamics. EC 2006: 120-129 - [c74]Michael J. Kearns, Siddharth Suri:
Networks preserving evolutionary equilibria and the power of randomization. EC 2006: 200-207 - 2005
- [c73]Sham M. Kakade, Michael J. Kearns:
Trading in Markovian Price Models. COLT 2005: 606-620 - [c72]Koby Crammer, Michael J. Kearns, Jennifer Wortman:
Learning from Data of Variable Quality. NIPS 2005: 219-226 - [c71]Yuriy Nevmyvaka, Michael J. Kearns, Amy Papandreou, Katia P. Sycara:
Electronic Trading in Order-Driven Markets: Efficient Execution. CEC 2005: 190-197 - [e5]