Stop the war!
Остановите войну!
for scientists:
default search action
Nicolas Papadakis
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j34]Samuel Hurault, Antonin Chambolle, Arthur Leclaire, Nicolas Papadakis:
Convergent Plug-and-Play with Proximal Denoiser and Unconstrained Regularization Parameter. J. Math. Imaging Vis. 66(4): 616-638 (2024) - [c46]Marien Renaud, Jean Prost, Arthur Leclaire, Nicolas Papadakis:
Plug-and-Play image restoration with Stochastic deNOising REgularization. ICML 2024 - [c45]Jean Prost, Antoine Houdard, Andrés Almansa, Nicolas Papadakis:
Efficient Posterior Sampling for Diverse Super-Resolution with Hierarchical VAE Prior. VISIGRAPP (3): VISAPP 2024: 393-400 - [i37]Marien Renaud, Jean Prost, Arthur Leclaire, Nicolas Papadakis:
Plug-and-Play image restoration with Stochastic deNOising REgularization. CoRR abs/2402.01779 (2024) - 2023
- [j33]Antoine Houdard, Arthur Leclaire, Nicolas Papadakis, Julien Rabin:
A Generative Model for Texture Synthesis based on Optimal Transport Between Feature Distributions. J. Math. Imaging Vis. 65(1): 4-28 (2023) - [j32]Antoine Houdard, Arthur Leclaire, Nicolas Papadakis, Julien Rabin:
On the Gradient Formula for learning Generative Models with Regularized Optimal Transport Costs. Trans. Mach. Learn. Res. 2023 (2023) - [c44]Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro Liò, Carola-Bibiane Schönlieb, Angelica I. Avilés-Rivero:
SCOTCH and SODA: A Transformer Video Shadow Detection Framework. CVPR 2023: 10449-10458 - [c43]Jean Prost, Antoine Houdard, Andrés Almansa, Nicolas Papadakis:
Inverse problem regularization with hierarchical variational autoencoders. ICCV 2023: 22837-22848 - [c42]Samuel Hurault, Ulugbek Kamilov, Arthur Leclaire, Nicolas Papadakis:
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems. NeurIPS 2023 - [c41]Samuel Hurault, Antonin Chambolle, Arthur Leclaire, Nicolas Papadakis:
A Relaxed Proximal Gradient Descent Algorithm for Convergent Plug-and-Play with Proximal Denoiser. SSVM 2023: 379-392 - [c40]Warren Jouanneau, Aurélie Bugeau, Marc Palyart, Nicolas Papadakis, Laurent Vézard:
A Patch-Based Architecture for Multi-Label Classification from Single Positive Annotations. VISIGRAPP (5: VISAPP) 2023: 47-58 - [i36]Samuel Hurault, Antonin Chambolle, Arthur Leclaire, Nicolas Papadakis:
A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser. CoRR abs/2301.13731 (2023) - [i35]Jean Prost, Antoine Houdard, Andrés Almansa, Nicolas Papadakis:
Inverse problem regularization with hierarchical variational autoencoders. CoRR abs/2303.11217 (2023) - [i34]Samuel Hurault, Ulugbek Kamilov, Arthur Leclaire, Nicolas Papadakis:
Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems. CoRR abs/2306.03466 (2023) - [i33]Nadja Gruber, Johannes Schwab, Noémie Debroux, Nicolas Papadakis, Markus Haltmeier:
Single-Image based unsupervised joint segmentation and denoising. CoRR abs/2309.10511 (2023) - [i32]Samuel Hurault, Antonin Chambolle, Arthur Leclaire, Nicolas Papadakis:
Convergent plug-and-play with proximal denoiser and unconstrained regularization parameter. CoRR abs/2311.01216 (2023) - 2022
- [j31]Angelica I. Avilés-Rivero, Philip Sellars, Carola-Bibiane Schönlieb, Nicolas Papadakis:
GraphXCOVID: Explainable deep graph diffusion pseudo-Labelling for identifying COVID-19 on chest X-rays. Pattern Recognit. 122: 108274 (2022) - [c39]Samuel Hurault, Arthur Leclaire, Nicolas Papadakis:
Gradient Step Denoiser for convergent Plug-and-Play. ICLR 2022 - [c38]Samuel Hurault, Arthur Leclaire, Nicolas Papadakis:
Proximal Denoiser for Convergent Plug-and-Play Optimization with Nonconvex Regularization. ICML 2022: 9483-9505 - [c37]Angelica I. Avilés-Rivero, Christina Runkel, Nicolas Papadakis, Zoe Kourtzi, Carola-Bibiane Schönlieb:
Multi-modal Hypergraph Diffusion Network with Dual Prior for Alzheimer Classification. MICCAI (3) 2022: 717-727 - [i31]Samuel Hurault, Arthur Leclaire, Nicolas Papadakis:
Proximal denoiser for convergent plug-and-play optimization with nonconvex regularization. CoRR abs/2201.13256 (2022) - [i30]Angelica I. Avilés-Rivero, Christina Runkel, Nicolas Papadakis, Zoe Kourtzi, Carola-Bibiane Schönlieb:
Multi-Modal Hypergraph Diffusion Network with Dual Prior for Alzheimer Classification. CoRR abs/2204.02399 (2022) - [i29]Jean Prost, Antoine Houdard, Nicolas Papadakis, Andrés Almansa:
Diverse super-resolution with pretrained deep hiererarchical VAEs. CoRR abs/2205.10347 (2022) - [i28]Warren Jouanneau, Aurélie Bugeau, Marc Palyart, Nicolas Papadakis, Laurent Vézard:
A patch-based architecture for multi-label classification from single label annotations. CoRR abs/2209.06530 (2022) - [i27]Lihao Liu, Jean Prost, Lei Zhu, Nicolas Papadakis, Pietro Liò, Carola-Bibiane Schönlieb, Angelica I. Avilés-Rivero:
SCOTCH and SODA: A Transformer Video Shadow Detection Framework. CoRR abs/2211.06885 (2022) - 2021
- [j30]Alexis Thibault, Lénaïc Chizat, Charles Dossal, Nicolas Papadakis:
Overrelaxed Sinkhorn-Knopp Algorithm for Regularized Optimal Transport. Algorithms 14(5): 143 (2021) - [j29]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter:
Block-Based Refitting in ℓ 12 Sparse Regularization. J. Math. Imaging Vis. 63(2): 216-236 (2021) - [j28]Leon Bungert, Ester Hait-Fraenkel, Nicolas Papadakis, Guy Gilboa:
Nonlinear Power Method for Computing Eigenvectors of Proximal Operators and Neural Networks. SIAM J. Imaging Sci. 14(3): 1114-1148 (2021) - [j27]Rihuan Ke, Aurélie Bugeau, Nicolas Papadakis, Mark Kirkland, Peter Schütz, Carola-Bibiane Schönlieb:
Multi-Task Deep Learning for Image Segmentation Using Recursive Approximation Tasks. IEEE Trans. Image Process. 30: 3555-3567 (2021) - [c36]Warren Jouanneau, Aurélie Bugeau, Marc Palyart, Nicolas Papadakis, Laurent Vézard:
Where Are My Clothes? A Multi-Level Approach for Evaluating Deep Instance Segmentation Architectures on Fashion Images. CVPR Workshops 2021: 3951-3955 - [c35]Reda Abdellah Kamraoui, Vinh-Thong Ta, Nicolas Papadakis, Fanny Compaire, José V. Manjón, Pierrick Coupé:
POPCORN: Progressive Pseudo-Labeling with Consistency Regularization and Neighboring. MICCAI (2) 2021: 373-382 - [c34]Antoine Houdard, Arthur Leclaire, Nicolas Papadakis, Julien Rabin:
Wasserstein Generative Models for Patch-Based Texture Synthesis. SSVM 2021: 269-280 - [c33]Jean Prost, Antoine Houdard, Andrés Almansa, Nicolas Papadakis:
Learning Local Regularization for Variational Image Restoration. SSVM 2021: 358-370 - [i26]Antoine Houdard, Arthur Leclaire, Nicolas Papadakis, Julien Rabin:
On the Existence of Optimal Transport Gradient for Learning Generative Models. CoRR abs/2102.05542 (2021) - [i25]Jean Prost, Antoine Houdard, Andrés Almansa, Nicolas Papadakis:
Learning local regularization for variational image restoration. CoRR abs/2102.06155 (2021) - [i24]Reda Abdellah Kamraoui, Vinh-Thong Ta, Nicolas Papadakis, Fanny Compaire, José V. Manjón, Pierrick Coupé:
POPCORN: Progressive Pseudo-labeling with Consistency Regularization and Neighboring. CoRR abs/2109.06361 (2021) - [i23]Samuel Hurault, Arthur Leclaire, Nicolas Papadakis:
Gradient Step Denoiser for convergent Plug-and-Play. CoRR abs/2110.03220 (2021) - 2020
- [j26]Laura Gómez-Navarro, Emmanuel Cosme, Julien Le Sommer, Nicolas Papadakis, Ananda Pascual:
Development of an Image De-Noising Method in Preparation for the Surface Water and Ocean Topography Satellite Mission. Remote. Sens. 12(4): 734 (2020) - [j25]Simone Parisotto, Luca Calatroni, Aurélie Bugeau, Nicolas Papadakis, Carola-Bibiane Schönlieb:
Variational Osmosis for Non-Linear Image Fusion. IEEE Trans. Image Process. 29: 5507-5516 (2020) - [c32]Rihuan Ke, Aurélie Bugeau, Nicolas Papadakis, Peter Schütz, Carola-Bibiane Schönlieb:
Learning to Segment Microscopy Images with Lazy Labels. ECCV Workshops (1) 2020: 411-428 - [i22]Rihuan Ke, Aurélie Bugeau, Nicolas Papadakis, Mark Kirkland, Peter Schütz, Carola-Bibiane Schönlieb:
Multi-task deep learning for image segmentation using recursive approximation tasks. CoRR abs/2005.13053 (2020) - [i21]Antoine Houdard, Arthur Leclaire, Nicolas Papadakis, Julien Rabin:
Wasserstein Generative Models for Patch-based Texture Synthesis. CoRR abs/2007.03408 (2020) - [i20]Angelica I. Avilés-Rivero, Philip Sellars, Carola-Bibiane Schönlieb, Nicolas Papadakis:
GraphXCOVID: Explainable Deep Graph Diffusion Pseudo-Labelling for Identifying COVID-19 on Chest X-rays. CoRR abs/2010.00378 (2020)
2010 – 2019
- 2019
- [j24]Jérémie Bigot, Elsa Cazelles, Nicolas Papadakis:
Penalization of Barycenters in the Wasserstein Space. SIAM J. Math. Anal. 51(3): 2261-2285 (2019) - [c31]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, Yannick Berthoumieu:
Texture-Aware Superpixel Segmentation. ICIP 2019: 1465-1469 - [c30]Philip Sellars, Angelica I. Avilés-Rivero, Nicolas Papadakis, David Coomes, Anita Faul, Carola-Bibiane Schönlieb:
Semi-Supervised Learning with Graphs: Covariance Based Superpixels For Hyperspectral Image Classification. IGARSS 2019: 592-595 - [c29]Angelica I. Avilés-Rivero, Nicolas Papadakis, Ruoteng Li, Philip Sellars, Qingnan Fan, Robby T. Tan, Carola-Bibiane Schönlieb:
GraphX $$^\mathbf{\small NET } -$$ -Chest X-Ray Classification Under Extreme Minimal Supervision. MICCAI (6) 2019: 504-512 - [c28]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter:
Refitting Solutions Promoted by ℓ _12 Sparse Analysis Regularizations with Block Penalties. SSVM 2019: 131-143 - [i19]Philip Sellars, Angelica I. Avilés-Rivero, Nicolas Papadakis, David Coomes, Anita Faul, Carola-Bibiane Schönlieb:
Semi-supervised Learning with Graphs: Covariance Based Superpixels For Hyperspectral Image Classification. CoRR abs/1901.04240 (2019) - [i18]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, Yannick Berthoumieu:
Texture-Aware Superpixel Segmentation. CoRR abs/1901.11111 (2019) - [i17]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
Superpixel-based Color Transfer. CoRR abs/1903.06010 (2019) - [i16]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
Robust Shape Regularity Criteria for Superpixel Evaluation. CoRR abs/1903.07146 (2019) - [i15]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
SCALP: Superpixels with Contour Adherence using Linear Path. CoRR abs/1903.07149 (2019) - [i14]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
Evaluation Framework of Superpixel Methods with a Global Regularity Measure. CoRR abs/1903.07162 (2019) - [i13]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, José V. Manjón, D. Louis Collins, Pierrick Coupé, Alzheimer's Disease Neuroimaging Initiative:
An Optimized PatchMatch for Multi-scale and Multi-feature Label Fusion. CoRR abs/1903.07165 (2019) - [i12]Rémi Giraud, Vinh-Thong Ta, Aurélie Bugeau, Pierrick Coupé, Nicolas Papadakis:
SuperPatchMatch: an Algorithm for Robust Correspondences using Superpixel Patches. CoRR abs/1903.07169 (2019) - [i11]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
Robust superpixels using color and contour features along linear path. CoRR abs/1903.07193 (2019) - [i10]Angelica I. Avilés-Rivero, Nicolas Papadakis, Ruoteng Li, Samar M. Alsaleh, Robby T. Tan, Carola-Bibiane Schönlieb:
Beyond Supervised Classification: Extreme Minimal Supervision with the Graph 1-Laplacian. CoRR abs/1906.08635 (2019) - [i9]Rihuan Ke, Aurélie Bugeau, Nicolas Papadakis, Peter Schütz, Carola-Bibiane Schönlieb:
A multi-task U-net for segmentation with lazy labels. CoRR abs/1906.12177 (2019) - [i8]Angelica I. Avilés-Rivero, Nicolas Papadakis, Ruoteng Li, Philip Sellars, Qingnan Fan, Robby T. Tan, Carola-Bibiane Schönlieb:
GraphXNET-Chest X-Ray Classification Under Extreme Minimal Supervision. CoRR abs/1907.10085 (2019) - [i7]Simone Parisotto, Luca Calatroni, Aurélie Bugeau, Nicolas Papadakis, Carola-Bibiane Schönlieb:
Variational Osmosis for Non-linear Image Fusion. CoRR abs/1910.02012 (2019) - 2018
- [j23]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
Robust superpixels using color and contour features along linear path. Comput. Vis. Image Underst. 170: 1-13 (2018) - [j22]Arnaud Dessein, Nicolas Papadakis, Jean-Luc Rouas:
Regularized Optimal Transport and the Rot Mover's Distance. J. Mach. Learn. Res. 19: 15:1-15:53 (2018) - [j21]Jean-François Aujol, Guy Gilboa, Nicolas Papadakis:
Theoretical Analysis of Flows Estimating Eigenfunctions of One-Homogeneous Functionals. SIAM J. Imaging Sci. 11(2): 1416-1440 (2018) - [j20]Elsa Cazelles, Vivien Seguy, Jérémie Bigot, Marco Cuturi, Nicolas Papadakis:
Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space. SIAM J. Sci. Comput. 40(2) (2018) - 2017
- [j19]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
Evaluation framework of superpixel methods with a global regularity measure. J. Electronic Imaging 26(6): 61603 (2017) - [j18]Nicolas Papadakis, Julien Rabin:
Convex Histogram-Based Joint Image Segmentation with Regularized Optimal Transport Cost. J. Math. Imaging Vis. 59(2): 161-186 (2017) - [j17]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter:
CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration. SIAM J. Imaging Sci. 10(1): 243-284 (2017) - [j16]Rémi Giraud, Vinh-Thong Ta, Aurélie Bugeau, Pierrick Coupé, Nicolas Papadakis:
SuperPatchMatch: An Algorithm for Robust Correspondences Using Superpixel Patches. IEEE Trans. Image Process. 26(8): 4068-4078 (2017) - [c27]Fabien Pierre, Jean-François Aujol, Charles-Alban Deledalle, Nicolas Papadakis:
Luminance-Guided Chrominance Denoising with Debiased Coupled Total Variation. EMMCVPR 2017: 235-248 - [c26]Elsa Cazelles, Jérémie Bigot, Nicolas Papadakis:
Regularized Barycenters in the Wasserstein Space. GSI 2017: 83-90 - [c25]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
Superpixel-based color transfer. ICIP 2017: 700-704 - [c24]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
Robust shape regularity criteria for superpixel evaluation. ICIP 2017: 3455-3459 - [i6]Arnaud Dessein, Nicolas Papadakis, Charles-Alban Deledalle:
Parameter Estimation in Finite Mixture Models by Regularized Optimal Transport: A Unified Framework for Hard and Soft Clustering. CoRR abs/1711.04366 (2017) - 2016
- [j15]Jean-François Aujol, Mila Nikolova, Nicolas Papadakis:
Guest Editorial: Scale-Space and Variational Methods. J. Math. Imaging Vis. 56(2): 173-174 (2016) - [j14]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis, José V. Manjón, D. Louis Collins, Pierrick Coupé:
An Optimized PatchMatch for multi-scale and multi-feature label fusion. NeuroImage 124: 770-782 (2016) - [c23]Rémi Giraud, Vinh-Thong Ta, Nicolas Papadakis:
SCALP: Superpixels with Contour Adherence using Linear Path. ICPR 2016: 2374-2379 - [i5]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon, Samuel Vaiter:
CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration. CoRR abs/1606.05158 (2016) - [i4]Nicolas Papadakis, Julien Rabin:
Convex Histogram-Based Joint Image Segmentation with Regularized Optimal Transport Cost. CoRR abs/1610.01400 (2016) - [i3]Arnaud Dessein, Nicolas Papadakis, Jean-Luc Rouas:
Regularized Optimal Transport and the Rot Mover's Distance. CoRR abs/1610.06447 (2016) - 2015
- [b2]Nicolas Papadakis:
Optimal Transport for Image Processing. (Transport Optimal pour le Traitement d'Images). University of Bordeaux, France, 2015 - [j13]Fabien Pierre, Jean-François Aujol, Aurélie Bugeau, Nicolas Papadakis, Vinh-Thong Ta:
Luminance-Chrominance Model for Image Colorization. SIAM J. Imaging Sci. 8(1): 536-563 (2015) - [c22]Julien Rabin, Nicolas Papadakis:
Non-convex Relaxation of Optimal Transport for Color Transfer Between Images. GSI 2015: 87-95 - [c21]Jean-François Aujol, Guy Gilboa, Nicolas Papadakis:
Fundamentals of Non-Local Total Variation Spectral Theory. SSVM 2015: 66-77 - [c20]Charles-Alban Deledalle, Nicolas Papadakis, Joseph Salmon:
On Debiasing Restoration Algorithms: Applications to Total-Variation and Nonlocal-Means. SSVM 2015: 129-141 - [c19]Julien Rabin, Nicolas Papadakis:
Convex Color Image Segmentation with Optimal Transport Distances. SSVM 2015: 256-269 - [e1]Jean-François Aujol, Mila Nikolova, Nicolas Papadakis:
Scale Space and Variational Methods in Computer Vision - 5th International Conference, SSVM 2015, Lège-Cap Ferret, France, May 31 - June 4, 2015, Proceedings. Lecture Notes in Computer Science 9087, Springer 2015, ISBN 978-3-319-18460-9 [contents] - [i2]Julien Rabin, Nicolas Papadakis:
Convex Color Image Segmentation with Optimal Transport Distances. CoRR abs/1503.01986 (2015) - 2014
- [j12]Nicolas Papadakis, Gabriel Peyré, Édouard Oudet:
Optimal Transport with Proximal Splitting. SIAM J. Imaging Sci. 7(1): 212-238 (2014) - [j11]Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, Jean-François Aujol:
Regularized Discrete Optimal Transport. SIAM J. Imaging Sci. 7(3): 1853-1882 (2014) - [j10]Aurélie Bugeau, Vinh-Thong Ta, Nicolas Papadakis:
Variational Exemplar-Based Image Colorization. IEEE Trans. Image Process. 23(1): 298-307 (2014) - [c18]Fabien Pierre, Jean-François Aujol, Aurélie Bugeau, Nicolas Papadakis, Vinh-Thong Ta:
Exemplar-based colorization in RGB color space. ICIP 2014: 625-629 - [c17]Julien Rabin, Sira Ferradans, Nicolas Papadakis:
Adaptive color transfer with relaxed optimal transport. ICIP 2014: 4852-4856 - 2013
- [j9]Nicolas Papadakis, Romain Yildizoglu, Jean-François Aujol, Vicent Caselles:
High-Dimension Multilabel Problems: Convex or Nonconvex Relaxation? SIAM J. Imaging Sci. 6(4): 2603-2639 (2013) - [c16]Romain Yildizoglu, Jean-François Aujol, Nicolas Papadakis:
A Convex Formulation for Global Histogram Based Binary Segmentation. EMMCVPR 2013: 335-349 - [c15]Sira Ferradans, Nicolas Papadakis, Julien Rabin, Gabriel Peyré, Jean-François Aujol:
Regularized Discrete Optimal Transport. SSVM 2013: 428-439 - [i1]Sira Ferradans, Nicolas Papadakis, Gabriel Peyré, Jean-François Aujol:
Regularized Discrete Optimal Transport. CoRR abs/1307.5551 (2013) - 2012
- [j8]Nicolas Papadakis, Antonio Baeza, Aurélie Bugeau, Pau Gargallo, Olivier D'Hondt, Vicent Caselles, Xavier Armangué, Ignasi Rius, Sergi Sagàs:
Virtual camera synthesis for soccer game replays. J. Virtual Real. Broadcast. 9 (2012) - [c14]Romain Yildizoglu, Jean-François Aujol, Nicolas Papadakis:
Active contours without level sets. ICIP 2012: 2549-2552 - 2011
- [j7]Nicolas Papadakis, Aurélie Bugeau:
Tracking with Occlusions via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 33(1): 144-157 (2011) - [j6]Nicolas Papadakis, Edoardo Provenzi, Vicent Caselles:
A Variational Model for Histogram Transfer of Color Images. IEEE Trans. Image Process. 20(6): 1682-1695 (2011) - [c13]Alexandre Hervieu, Nicolas Papadakis, Aurélie Bugeau, Pau Gargallo, Vicent Caselles:
Stereoscopic image inpainting using scene geometry. ICME 2011: 1-6 - 2010
- [j5]Nicolas Papadakis, Vicent Caselles:
Multi-label Depth Estimation for Graph Cuts Stereo Problems. J. Math. Imaging Vis. 38(1): 70-82 (2010) - [j4]Antonio Baeza, Vicent Caselles, Pau Gargallo, Nicolas Papadakis:
A Narrow Band Method for the Convex Formulation of Discrete Multilabel Problems. Multiscale Model. Simul. 8(5): 2048-2078 (2010) - [c12]Nicolas Papadakis, Antonio Baeza, Pau Gargallo, Vicent Caselles:
Polyconvexification of the multi-label optical flow problem. ICIP 2010: 765-768 - [c11]Alexandre Hervieu, Nicolas Papadakis, Aurélie Bugeau, Pau Gargallo, Vicent Caselles:
Stereoscopic Image Inpainting: Distinct Depth Maps and Images Inpainting. ICPR 2010: 4101-4104 - [c10]Aurélie Bugeau, Pau Gargallo, Olivier D'Hondt, Alexandre Hervieu, Nicolas Papadakis, Vicent Caselles:
Coherent Background Video Inpainting through Kalman Smoothing along Trajectories. VMV 2010: 123-130
2000 – 2009
- 2008
- [j3]Nicolas Papadakis, Étienne Mémin:
A Variational Technique for Time Consistent Tracking of Curves and Motion. J. Math. Imaging Vis. 31(1): 81-103 (2008) - [j2]Nicolas Papadakis, Étienne Mémin:
Variational Assimilation of Fluid Motion from Image Sequence. SIAM J. Imaging Sci. 1(4): 343-363 (2008) - [c9]Thomas Corpetti, Patrick Héas, Étienne Mémin, Nicolas Papadakis:
Variational Pressure Image Assimilation for Atmospheric Motion Estimation. IGARSS (2) 2008: 505-508 - 2007
- [b1]Nicolas Papadakis:
Assimilation de données images : application au suivi de courbes et de champs de vecteurs. University of Rennes 1, France, 2007 - [j1]Patrick Héas, Étienne Mémin, Nicolas Papadakis, André Szantai:
Layered Estimation of Atmospheric Mesoscale Dynamics From Satellite Imagery. IEEE Trans. Geosci. Remote. Sens. 45(12-2): 4087-4104 (2007) - [c8]Nicolas Papadakis, Patrick Héas, Étienne Mémin:
Image Assimilation for Motion Estimation of Atmospheric Layers with Shallow-Water Model. ACCV (1) 2007: 864-874 - [c7]Nicolas Papadakis, Thomas Corpetti, Étienne Mémin:
Dynamically consistent optical flow estimation. ICCV 2007: 1-7 - [c6]Nicolas Papadakis, Étienne Mémin:
Variational optimal control technique for the tracking of deformable objects. ICCV 2007: 1-7 - [c5]Thomas Corpetti, Nicolas Papadakis, Étienne Mémin:
Dense estimation of motion fields on meteosat second generation images using a dynamical consistency. IGARSS 2007: 4749-4752 - [c4]