Stop the war!
Остановите войну!
for scientists:
default search action
Ankit Singh Rawat
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2024
- [j10]Michal Lukasik, Vaishnavh Nagarajan, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
What do larger image classifiers memorise? Trans. Mach. Learn. Res. 2024 (2024) - [c71]Yingcong Li, Yixiao Huang, Muhammed Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak:
Mechanics of Next Token Prediction with Self-Attention. AISTATS 2024: 685-693 - [c70]Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, Vaishnavh Nagarajan:
Think before you speak: Training Language Models With Pause Tokens. ICLR 2024 - [c69]Nilesh Gupta, Devvrit, Ankit Singh Rawat, Srinadh Bhojanapalli, Prateek Jain, Inderjit S. Dhillon:
Dual-Encoders for Extreme Multi-label Classification. ICLR 2024 - [c68]Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Language Model Cascades: Token-Level Uncertainty And Beyond. ICLR 2024 - [c67]Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv Kumar, Jean-François Kagy, Rishabh Agarwal:
DistillSpec: Improving Speculative Decoding via Knowledge Distillation. ICLR 2024 - [c66]Soumya Basu, Ankit Singh Rawat, Manzil Zaheer:
A Statistical Framework for Data-dependent Retrieval-Augmented Models. ICML 2024 - [c65]Muhammed Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, Samet Oymak:
From Self-Attention to Markov Models: Unveiling the Dynamics of Generative Transformers. ICML 2024 - [c64]Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer, Wittawat Jitkrittum, Veeranjaneyulu Sadhanala, Sadeep Jayasumana, Aditya Krishna Menon, Rob Fergus, Sanjiv Kumar:
USTAD: Unified Single-model Training Achieving Diverse Scores for Information Retrieval. ICML 2024 - [i60]Muhammed Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, Samet Oymak:
From Self-Attention to Markov Models: Unveiling the Dynamics of Generative Transformers. CoRR abs/2402.13512 (2024) - [i59]Yingcong Li, Yixiao Huang, Muhammed Emrullah Ildiz, Ankit Singh Rawat, Samet Oymak:
Mechanics of Next Token Prediction with Self-Attention. CoRR abs/2403.08081 (2024) - [i58]Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Language Model Cascades: Token-level uncertainty and beyond. CoRR abs/2404.10136 (2024) - [i57]Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Seungyeon Kim, Neha Gupta, Aditya Krishna Menon, Sanjiv Kumar:
Faster Cascades via Speculative Decoding. CoRR abs/2405.19261 (2024) - [i56]Congchao Wang, Sean Augenstein, Keith Rush, Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Aditya Krishna Menon, Alec Go:
Cascade-Aware Training of Language Models. CoRR abs/2406.00060 (2024) - [i55]Ziwei Ji, Himanshu Jain, Andreas Veit, Sashank J. Reddi, Sadeep Jayasumana, Ankit Singh Rawat, Aditya Krishna Menon, Felix Yu, Sanjiv Kumar:
Efficient Document Ranking with Learnable Late Interactions. CoRR abs/2406.17968 (2024) - [i54]Yingcong Li, Ankit Singh Rawat, Samet Oymak:
Fine-grained Analysis of In-context Linear Estimation: Data, Architecture, and Beyond. CoRR abs/2407.10005 (2024) - 2023
- [c63]Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix X. Yu, Sanjiv Kumar:
Large Language Models with Controllable Working Memory. ACL (Findings) 2023: 1774-1793 - [c62]Hrayr Harutyunyan, Ankit Singh Rawat, Aditya Krishna Menon, Seungyeon Kim, Sanjiv Kumar:
Supervision Complexity and its Role in Knowledge Distillation. ICLR 2023 - [c61]Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Felix Chern, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar:
The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers. ICLR 2023 - [c60]Si Si, Felix X. Yu, Ankit Singh Rawat, Cho-Jui Hsieh, Sanjiv Kumar:
Serving Graph Compression for Graph Neural Networks. ICLR 2023 - [c59]Manzil Zaheer, Ankit Singh Rawat, Seungyeon Kim, Chong You, Himanshu Jain, Andreas Veit, Rob Fergus, Sanjiv Kumar:
Teacher Guided Training: An Efficient Framework for Knowledge Transfer. ICLR 2023 - [c58]Soumya Basu, Ankit Singh Rawat, Manzil Zaheer:
A Statistical Perspective on Retrieval-Based Models. ICML 2023: 1852-1886 - [c57]Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, Christos Thrampoulidis:
On the Role of Attention in Prompt-tuning. ICML 2023: 26724-26768 - [c56]Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sanjiv Kumar:
When Does Confidence-Based Cascade Deferral Suffice? NeurIPS 2023 - [c55]Zitong Yang, Michal Lukasik, Vaishnavh Nagarajan, Zonglin Li, Ankit Singh Rawat, Manzil Zaheer, Aditya Krishna Menon, Sanjiv Kumar:
ResMem: Learn what you can and memorize the rest. NeurIPS 2023 - [i53]Seungyeon Kim, Ankit Singh Rawat, Manzil Zaheer, Sadeep Jayasumana, Veeranjaneyulu Sadhanala, Wittawat Jitkrittum, Aditya Krishna Menon, Rob Fergus, Sanjiv Kumar:
EmbedDistill: A Geometric Knowledge Distillation for Information Retrieval. CoRR abs/2301.12005 (2023) - [i52]Hrayr Harutyunyan, Ankit Singh Rawat, Aditya Krishna Menon, Seungyeon Kim, Sanjiv Kumar:
Supervision Complexity and its Role in Knowledge Distillation. CoRR abs/2301.12245 (2023) - [i51]Zitong Yang, Michal Lukasik, Vaishnavh Nagarajan, Zonglin Li, Ankit Singh Rawat, Manzil Zaheer, Aditya Krishna Menon, Sanjiv Kumar:
ResMem: Learn what you can and memorize the rest. CoRR abs/2302.01576 (2023) - [i50]Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, Christos Thrampoulidis:
On the Role of Attention in Prompt-tuning. CoRR abs/2306.03435 (2023) - [i49]Wittawat Jitkrittum, Neha Gupta, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sanjiv Kumar:
When Does Confidence-Based Cascade Deferral Suffice? CoRR abs/2307.02764 (2023) - [i48]Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, Vaishnavh Nagarajan:
Think before you speak: Training Language Models With Pause Tokens. CoRR abs/2310.02226 (2023) - [i47]Michal Lukasik, Vaishnavh Nagarajan, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
What do larger image classifiers memorise? CoRR abs/2310.05337 (2023) - [i46]Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat, Aditya Krishna Menon, Afshin Rostamizadeh, Sanjiv Kumar, Jean-François Kagy, Rishabh Agarwal:
DistillSpec: Improving Speculative Decoding via Knowledge Distillation. CoRR abs/2310.08461 (2023) - [i45]Nilesh Gupta, Devvrit Khatri, Ankit Singh Rawat, Srinadh Bhojanapalli, Prateek Jain, Inderjit S. Dhillon:
Efficacy of Dual-Encoders for Extreme Multi-Label Classification. CoRR abs/2310.10636 (2023) - 2022
- [c54]Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Seungyeon Kim, Sashank J. Reddi, Sanjiv Kumar:
In defense of dual-encoders for neural ranking. ICML 2022: 15376-15400 - [c53]Harikrishna Narasimhan, Wittawat Jitkrittum, Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar:
Post-hoc estimators for learning to defer to an expert. NeurIPS 2022 - [c52]Mingda Qiao, Guru Guruganesh, Ankit Singh Rawat, Kumar Avinava Dubey, Manzil Zaheer:
A Fourier Approach to Mixture Learning. NeurIPS 2022 - [i44]Jianyu Wang, Hang Qi, Ankit Singh Rawat, Sashank J. Reddi, Sagar Waghmare, Felix X. Yu, Gauri Joshi:
FedLite: A Scalable Approach for Federated Learning on Resource-constrained Clients. CoRR abs/2201.11865 (2022) - [i43]Wittawat Jitkrittum, Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar:
ELM: Embedding and Logit Margins for Long-Tail Learning. CoRR abs/2204.13208 (2022) - [i42]Manzil Zaheer, Ankit Singh Rawat, Seungyeon Kim, Chong You, Himanshu Jain, Andreas Veit, Rob Fergus, Sanjiv Kumar:
Teacher Guided Training: An Efficient Framework for Knowledge Transfer. CoRR abs/2208.06825 (2022) - [i41]Mingda Qiao, Guru Guruganesh, Ankit Singh Rawat, Avinava Dubey, Manzil Zaheer:
A Fourier Approach to Mixture Learning. CoRR abs/2210.02415 (2022) - [i40]Soumya Basu, Ankit Singh Rawat, Manzil Zaheer:
Generalization Properties of Retrieval-based Models. CoRR abs/2210.02617 (2022) - [i39]Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye, Felix Chern, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar:
Large Models are Parsimonious Learners: Activation Sparsity in Trained Transformers. CoRR abs/2210.06313 (2022) - [i38]Daliang Li, Ankit Singh Rawat, Manzil Zaheer, Xin Wang, Michal Lukasik, Andreas Veit, Felix X. Yu, Sanjiv Kumar:
Large Language Models with Controllable Working Memory. CoRR abs/2211.05110 (2022) - 2021
- [c51]Sashank J. Reddi, Rama Kumar Pasumarthi, Aditya Krishna Menon, Ankit Singh Rawat, Felix X. Yu, Seungyeon Kim, Andreas Veit, Sanjiv Kumar:
RankDistil: Knowledge Distillation for Ranking. AISTATS 2021: 2368-2376 - [c50]Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, Sanjiv Kumar:
Long-tail learning via logit adjustment. ICLR 2021 - [c49]Aditya Krishna Menon, Ankit Singh Rawat, Sanjiv Kumar:
Overparameterisation and worst-case generalisation: friend or foe? ICLR 2021 - [c48]Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Seungyeon Kim, Sanjiv Kumar:
A statistical perspective on distillation. ICML 2021: 7632-7642 - [c47]Ankit Singh Rawat, Aditya Krishna Menon, Wittawat Jitkrittum, Sadeep Jayasumana, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
Disentangling Sampling and Labeling Bias for Learning in Large-output Spaces. ICML 2021: 8890-8901 - [c46]Saikiran Bulusu, Venkata Gandikota, Arya Mazumdar, Ankit Singh Rawat, Pramod K. Varshney:
Byzantine Resilient Distributed Clustering with Redundant Data Assignment. ISIT 2021: 2143-2148 - [i37]Srinadh Bhojanapalli, Kimberly Wilber, Andreas Veit, Ankit Singh Rawat, Seungyeon Kim, Aditya Krishna Menon, Sanjiv Kumar:
On the Reproducibility of Neural Network Predictions. CoRR abs/2102.03349 (2021) - [i36]Andrew Cotter, Aditya Krishna Menon, Harikrishna Narasimhan, Ankit Singh Rawat, Sashank J. Reddi, Yichen Zhou:
Distilling Double Descent. CoRR abs/2102.06849 (2021) - [i35]Ankit Singh Rawat, Aditya Krishna Menon, Wittawat Jitkrittum, Sadeep Jayasumana, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
Disentangling Sampling and Labeling Bias for Learning in Large-Output Spaces. CoRR abs/2105.05736 (2021) - [i34]Ankit Singh Rawat, Manzil Zaheer, Aditya Krishna Menon, Amr Ahmed, Sanjiv Kumar:
When in Doubt, Summon the Titans: Efficient Inference with Large Models. CoRR abs/2110.10305 (2021) - 2020
- [j9]Christos Thrampoulidis, Ankit Singh Rawat:
The Generalized Lasso for Sub-Gaussian Measurements With Dithered Quantization. IEEE Trans. Inf. Theory 66(4): 2487-2500 (2020) - [c45]Hardik B. Jain, Matthew Edwards, Ethan R. Elenberg, Ankit Singh Rawat, Sriram Vishwanath:
Achieving Multi-port Memory Performance on Single-Port Memory with Coding Techniques. ICICT 2020: 366-375 - [c44]Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Can gradient clipping mitigate label noise? ICLR 2020 - [c43]Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Are Transformers universal approximators of sequence-to-sequence functions? ICLR 2020 - [c42]Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Low-Rank Bottleneck in Multi-head Attention Models. ICML 2020: 864-873 - [c41]Felix X. Yu, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Federated Learning with Only Positive Labels. ICML 2020: 10946-10956 - [c40]Venkata Gandikota, Arya Mazumdar, Ankit Singh Rawat:
Reliable Distributed Clustering with Redundant Data Assignment. ISIT 2020: 2556-2561 - [c39]Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Robust large-margin learning in hyperbolic space. NeurIPS 2020 - [c38]Pranjal Awasthi, Himanshu Jain, Ankit Singh Rawat, Aravindan Vijayaraghavan:
Adversarial robustness via robust low rank representations. NeurIPS 2020 - [c37]Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
O(n) Connections are Expressive Enough: Universal Approximability of Sparse Transformers. NeurIPS 2020 - [i33]Hardik B. Jain, Matthew Edwards, Ethan R. Elenberg, Ankit Singh Rawat, Sriram Vishwanath:
Achieving Multi-Port Memory Performance on Single-Port Memory with Coding Techniques. CoRR abs/2001.09599 (2020) - [i32]Srinadh Bhojanapalli, Chulhee Yun, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Low-Rank Bottleneck in Multi-head Attention Models. CoRR abs/2002.07028 (2020) - [i31]Venkata Gandikota, Arya Mazumdar, Ankit Singh Rawat:
Reliable Distributed Clustering with Redundant Data Assignment. CoRR abs/2002.08892 (2020) - [i30]Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Robust Large-Margin Learning in Hyperbolic Space. CoRR abs/2004.05465 (2020) - [i29]Felix X. Yu, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar:
Federated Learning with Only Positive Labels. CoRR abs/2004.10342 (2020) - [i28]Ankit Singh Rawat, Aditya Krishna Menon, Andreas Veit, Felix X. Yu, Sashank J. Reddi, Sanjiv Kumar:
Doubly-stochastic mining for heterogeneous retrieval. CoRR abs/2004.10915 (2020) - [i27]Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, Seungyeon Kim, Sanjiv Kumar:
Why distillation helps: a statistical perspective. CoRR abs/2005.10419 (2020) - [i26]Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
$O(n)$ Connections are Expressive Enough: Universal Approximability of Sparse Transformers. CoRR abs/2006.04862 (2020) - [i25]Pranjal Awasthi, Himanshu Jain, Ankit Singh Rawat, Aravindan Vijayaraghavan:
Adversarial robustness via robust low rank representations. CoRR abs/2007.06555 (2020) - [i24]Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, Sanjiv Kumar:
Long-tail learning via logit adjustment. CoRR abs/2007.07314 (2020) - [i23]Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix X. Yu, Sanjiv Kumar:
Modifying Memories in Transformer Models. CoRR abs/2012.00363 (2020)
2010 – 2019
- 2019
- [c36]Christos Thrampoulidis, Ankit Singh Rawat:
Lifting high-dimensional non-linear models with Gaussian regressors. AISTATS 2019: 3206-3215 - [c35]Arya Mazumdar, Ankit Singh Rawat:
Learning and Recovery in the ReLU Model. Allerton 2019: 108-115 - [c34]Gary C. F. Lee, Ankit Singh Rawat, Gregory W. Wornell:
Robust Direction of Arrival Estimation in the Presence of Array Faults using Snapshot Diversity. GlobalSIP 2019: 1-5 - [c33]Raj Kumar Maity, Ankit Singh Rawat, Arya Mazumdar:
Robust Gradient Descent via Moment Encoding and LDPC Codes. ISIT 2019: 2734-2738 - [c32]Ankit Singh Rawat, Jiecao Chen, Felix X. Yu, Ananda Theertha Suresh, Sanjiv Kumar:
Sampled Softmax with Random Fourier Features. NeurIPS 2019: 13834-13844 - [i22]Ankit Singh Rawat, Jiecao Chen, Felix X. Yu, Ananda Theertha Suresh, Sanjiv Kumar:
Sampled Softmax with Random Fourier Features. CoRR abs/1907.10747 (2019) - [i21]Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J. Reddi, Sanjiv Kumar:
Are Transformers universal approximators of sequence-to-sequence functions? CoRR abs/1912.10077 (2019) - 2018
- [j8]Ankit Singh Rawat, Itzhak Tamo, Venkatesan Guruswami, Klim Efremenko:
MDS Code Constructions With Small Sub-Packetization and Near-Optimal Repair Bandwidth. IEEE Trans. Inf. Theory 64(10): 6506-6525 (2018) - [j7]Ankit Singh Rawat, Onur Ozan Koyluoglu, Sriram Vishwanath:
Centralized Repair of Multiple Node Failures With Applications to Communication Efficient Secret Sharing. IEEE Trans. Inf. Theory 64(12): 7529-7550 (2018) - [c31]Christos Thrampoulidis, Ankit Singh Rawat:
The Generalized Lasso for Sub-gaussian Observations with Dithered Quantization. Allerton 2018: 624-631 - [i20]Arya Mazumdar, Ankit Singh Rawat:
Representation Learning and Recovery in the ReLU Model. CoRR abs/1803.04304 (2018) - [i19]Raj Kumar Maity, Ankit Singh Rawat, Arya Mazumdar:
Robust Gradient Descent via Moment Encoding with LDPC Codes. CoRR abs/1805.08327 (2018) - [i18]Christos Thrampoulidis, Ankit Singh Rawat:
The Generalized Lasso for Sub-gaussian Measurements with Dithered Quantization. CoRR abs/1807.06976 (2018) - 2017
- [c30]Arya Mazumdar, Ankit Singh Rawat:
Associative Memory Using Dictionary Learning and Expander Decoding. AAAI 2017: 267-273 - [c29]Islam Samy, Onur Ozan Koyluoglu, Ankit Singh Rawat:
Efficient data access in hybrid cloud storage. Allerton 2017: 1-8 - [c28]Ankit Singh Rawat:
Secrecy capacity of minimum storage regenerating codes. ISIT 2017: 1406-1410 - [c27]Ankit Singh Rawat, Itzhak Tamo, Venkatesan Guruswami, Klim Efremenko:
∊-MSR codes with small sub-packetization. ISIT 2017: 2043-2047 - [c26]Venkatesan Guruswami, Ankit Singh Rawat:
MDS Code Constructions with Small Sub-packetization and Near-optimal Repair Bandwidth. SODA 2017: 2109-2122 - [i17]Ankit Singh Rawat, Itzhak Tamo, Venkatesan Guruswami, Klim Efremenko:
MDS Code Constructions with Small Sub-packetization and Near-optimal Repair Bandwidth. CoRR abs/1709.08216 (2017) - 2016
- [j6]Ankit Singh Rawat, Zhao Song, Alexandros G. Dimakis, Anna Gál:
Batch Codes Through Dense Graphs Without Short Cycles. IEEE Trans. Inf. Theory 62(4): 1592-1604 (2016) - [j5]Ankit Singh Rawat, Dimitris S. Papailiopoulos, Alexandros G. Dimakis, Sriram Vishwanath:
Locality and Availability in Distributed Storage. IEEE Trans. Inf. Theory 62(8): 4481-4493 (2016) - [c25]Ankit Singh Rawat, Onur Ozan Koyluoglu, Sriram Vishwanath:
Centralized repair of multiple node failures. ISIT 2016: 1003-1007 - [c24]Arya Mazumdar, Yury Polyanskiy, Ankit Singh Rawat, Hajir Roozbehani:
Distance preserving maps and combinatorial joint source-channel coding for large alphabets. ISIT 2016: 3067-3071 - [c23]Ankit Singh Rawat, Onur Ozan Koyluoglu, Sriram Vishwanath:
Progress on high-rate MSR codes: Enabling arbitrary number of helper nodes. ITA 2016: 1-6 - [i16]Ankit Singh Rawat, Onur Ozan Koyluoglu, Sriram Vishwanath:
Progress on High-rate MSR Codes: Enabling Arbitrary Number of Helper Nodes. CoRR abs/1601.06362 (2016) - [i15]Ankit Singh Rawat, Onur Ozan Koyluoglu, Sriram Vishwanath:
Centralized Repair of Multiple Node Failures with Applications to Communication Efficient Secret Sharing. CoRR abs/1603.04822 (2016) - [i14]Venkatesan Guruswami, Ankit Singh Rawat:
New MDS codes with small sub-packetization and near-optimal repair bandwidth. CoRR abs/1608.00191 (2016) - [i13]Ankit Singh Rawat:
A Note on Secure Minimum Storage Regenerating Codes. CoRR abs/1608.01732 (2016) - [i12]Arya Mazumdar, Ankit Singh Rawat:
Associative Memory using Dictionary Learning and Expander Decoding. CoRR abs/1611.09621 (2016) - 2015
- [j4]Ankit Singh Rawat, Arya Mazumdar, Sriram Vishwanath:
Cooperative local repair in distributed storage. EURASIP J. Adv. Signal Process. 2015: 107 (2015) - [j3]Natalia Silberstein, Ankit Singh Rawat, Sriram Vishwanath:
Error-Correcting Regenerating and Locally Repairable Codes via Rank-Metric Codes. IEEE Trans. Inf. Theory 61(11): 5765-5778 (2015) - [c22]Casen Hunger, Mikhail Kazdagli, Ankit Singh Rawat, Alexandros G. Dimakis, Sriram Vishwanath, Mohit Tiwari:
Understanding contention-based channels and using them for defense. HPCA 2015: 639-650 - [c21]Arya Mazumdar, Ankit Singh Rawat:
On adversarial joint source channel coding. ISIT 2015: 271-275 - [c20]Ankit Singh Rawat, Zhao Song, Alexandros G. Dimakis, Anna Gál:
Batch codes through dense graphs without short cycles. ISIT 2015: 1477-1481 - [c19]Arya Mazumdar, Ankit Singh Rawat:
Associative Memory via a Sparse Recovery Model. NIPS 2015: 2701-2709 - 2014
- [j2]Onur Ozan Koyluoglu, Ankit Singh Rawat, Sriram Vishwanath:
Secure Cooperative Regenerating Codes for Distributed Storage Systems. IEEE Trans. Inf. Theory 60(9): 5228-5244 (2014) - [c18]Ankit Singh Rawat, Arya Mazumdar, Sriram Vishwanath:
On cooperative local repair in distributed storage. CISS 2014: 1-5 - [c17]Ankit Singh Rawat, Natalia Silberstein, Onur Ozan Koyluoglu, Sriram Vishwanath:
Secure distributed storage systems: Local repair with minimum bandwidth regeneration. ISCCSP 2014: 5-8 - [c16]Ankit Singh Rawat, Dimitris S. Papailiopoulos, Alexandros G. Dimakis, Sriram Vishwanath:
On codes with availability for distributed storage. ISCCSP 2014: 15-18 - [c15]Ankit Singh Rawat, Dimitris S. Papailiopoulos, Alexandros G. Dimakis, Sriram Vishwanath:
Locality and availability in distributed storage. ISIT 2014: 681-685 - [c14]Ankit Singh Rawat, Emina Soljanin:
Dynamic control of video quality for AVS. ISIT 2014: 821-825 - [i11]Ankit Singh Rawat, Dimitris S. Papailiopoulos, Alexandros G. Dimakis, Sriram Vishwanath:
Locality and Availability in Distributed Storage. CoRR abs/1402.2011 (2014) - [i10]Ankit Singh Rawat, Arya Mazumdar, Sriram Vishwanath:
Cooperative Local Repair in Distributed Storage. CoRR abs/1409.3900 (2014) - [i9]Alexandros G. Dimakis, Anna Gál, Ankit Singh Rawat, Zhao Song:
Batch Codes through Dense Graphs without Short Cycles. CoRR abs/1410.2920 (2014) - [i8]