


Остановите войну!
for scientists:


default search action
Paul D. Gader
Person information

- affiliation: University of Florida, Gainesville, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j102]Yuanhang Lin
, Susan Meerdink
, Paul D. Gader:
Spectral Transformations for Multitemporal Hyperspectral Classification. IEEE Geosci. Remote. Sens. Lett. 19: 1-5 (2022) - [j101]Aditya Dutt
, Alina Zare
, Paul D. Gader:
Shared Manifold Learning Using a Triplet Network for Multiple Sensor Translation and Fusion With Missing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 15: 9439-9456 (2022) - [j100]Susan Meerdink
, James Bocinsky, Alina Zare
, Nicholas Kroeger
, Connor H. McCurley, Daniel Shats, Paul D. Gader:
Multitarget Multiple-Instance Learning for Hyperspectral Target Detection. IEEE Trans. Geosci. Remote. Sens. 60: 1-14 (2022) - [c97]Alexander R. Webber, Simon R. Phillpot, Duy T. Nguyen, Eric O. McGhee
, W. Gregory Sawyer, Paul D. Gader:
ACESO: A 3D Agent-Based Simulation of the Interaction Between Immune and Tumor Cells. SIGSIM-PADS 2022: 49-50 - [c96]Yuanhang Lin, Paul D. Gader:
Addressing Spectral Variability In Hyperspectral Unmixing With Unsupervised Neural Networks. WHISPERS 2022: 1-5 - [i7]Aditya Dutt, Alina Zare, Paul D. Gader:
Shared Manifold Learning Using a Triplet Network for Multiple Sensor Translation and Fusion with Missing Data. CoRR abs/2210.17311 (2022) - 2021
- [j99]Pingjun Chen
, Yun Liang, Xiaoshuang Shi, Lin Yang, Paul D. Gader:
Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion. Neurocomputing 453: 312-325 (2021) - [i6]Ronald Fick, Paul D. Gader, Alina Zare:
Robust Semi-Supervised Classification using GANs with Self-Organizing Maps. CoRR abs/2110.10286 (2021) - 2020
- [j98]Pingjun Chen
, Xiaoshuang Shi, Yun Liang, Yuan Li, Lin Yang, Paul D. Gader:
Interactive thyroid whole slide image diagnostic system using deep representation. Comput. Methods Programs Biomed. 195: 105630 (2020) - [j97]Yuan Zhou
, Anand Rangarajan
, Paul D. Gader:
An Integrated Approach to Registration and Fusion of Hyperspectral and Multispectral Images. IEEE Trans. Geosci. Remote. Sens. 58(5): 3020-3033 (2020) - [i5]Matthew Cook, Alina Zare, Paul D. Gader:
Outlier Detection through Null Space Analysis of Neural Networks. CoRR abs/2007.01263 (2020)
2010 – 2019
- 2019
- [j96]Philip E. Dennison
, Yi Qi, Susan Meerdink
, Raymond F. Kokaly, David R. Thompson
, Craig S. T. Daughtry, Miguel Quemada
, Dar A. Roberts, Paul D. Gader
, Erin B. Wetherley
, Izaya Numata, Keely L. Roth:
Comparison of Methods for Modeling Fractional Cover Using Simulated Satellite Hyperspectral Imager Spectra. Remote. Sens. 11(18): 2072 (2019) - [c95]Ronald Fick, Paul D. Gader, Alina Zare, Susan Meerdink
:
Temporal Mapping of Hyperspectral Data. WHISPERS 2019: 1-4 - [c94]Susan Meerdink
, James Bocinsky, Erin B. Wetherley, Alina Zare, Connor H. McCurley, Paul D. Gader:
Developing Spectral Libraries Using Multiple Target Multiple Instance Adaptive Cosine/Coherence Estimator. WHISPERS 2019: 1-5 - [i4]Susan Meerdink, James Bocinsky, Alina Zare, Nicholas Kroeger, Connor H. McCurley, Daniel Shats, Paul D. Gader:
Multi-Target Multiple Instance Learning for Hyperspectral Target Detection. CoRR abs/1909.03316 (2019) - 2018
- [j95]Mubarakat Shuaibu, Won Suk Lee, John K. Schueller, Paul D. Gader, Young Ki Hong, Sangcheol Kim:
Unsupervised hyperspectral band selection for apple Marssonina blotch detection. Comput. Electron. Agric. 148: 45-53 (2018) - [j94]Yuan Zhou
, Anand Rangarajan
, Paul D. Gader:
A Gaussian Mixture Model Representation of Endmember Variability in Hyperspectral Unmixing. IEEE Trans. Image Process. 27(5): 2242-2256 (2018) - [i3]Yuan Zhou, Erin B. Wetherley, Paul D. Gader:
Unmixing urban hyperspectral imagery with a Gaussian mixture model on endmember variability. CoRR abs/1801.08513 (2018) - 2017
- [c93]Yuan Zhou, Anand Rangarajan, Paul D. Gader:
Nonrigid Registration of Hyperspectral and Color Images with Vastly Different Spatial and Spectral Resolutions for Spectral Unmixing and Pansharpening. CVPR Workshops 2017: 1571-1579 - [c92]Leila Kalantari, Paul D. Gader:
Cross-validating Gaussian process methods for hyperspectral data from tree crowns. IGARSS 2017: 3214-3217 - [i2]Yuan Zhou, Anand Rangarajan, Paul D. Gader:
A Gaussian mixture model representation of endmember variability in hyperspectral unmixing. CoRR abs/1710.00075 (2017) - 2016
- [j93]Seniha Esen Yüksel
, Paul D. Gader:
Context-based classification via mixture of hidden Markov model experts with applications in landmine detection. IET Comput. Vis. 10(8): 873-883 (2016) - [j92]Leila Kalantari
, Paul D. Gader, Sarah Graves, Stephanie A. Bohlman:
One-Class Gaussian Process for Possibilistic Classification Using Imaging Spectroscopy. IEEE Geosci. Remote. Sens. Lett. 13(7): 967-971 (2016) - [j91]Seniha Esen Yüksel
, Sefa Kucuk
, Paul D. Gader:
SPICEE: An Extension of SPICE for Sparse Endmember Estimation in Hyperspectral Imagery. IEEE Geosci. Remote. Sens. Lett. 13(12): 1910-1914 (2016) - [j90]Rob Heylen
, Alina Zare, Paul D. Gader, Paul Scheunders
:
Hyperspectral Unmixing With Endmember Variability via Alternating Angle Minimization. IEEE Trans. Geosci. Remote. Sens. 54(8): 4983-4993 (2016) - [j89]Yuan Zhou
, Anand Rangarajan, Paul D. Gader:
A Spatial Compositional Model for Linear Unmixing and Endmember Uncertainty Estimation. IEEE Trans. Image Process. 25(12): 5987-6002 (2016) - [c91]Rob Heylen
, Paul Scheunders
, Alina Zare, Paul D. Gader:
Alternating angle minimization based unmixingwith endmember variability. IGARSS 2016: 6974-6977 - [c90]Yuan Zhou, Anand Rangarajan, Paul D. Gader:
A Gaussian mixture model representation of endmember variability for spectral unmixing. WHISPERS 2016: 1-5 - 2015
- [j88]Rob Heylen
, Paul Scheunders
, Anand Rangarajan, Paul D. Gader:
Nonlinear Unmixing by Using Different Metrics in a Linear Unmixing Chain. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 8(6): 2655-2664 (2015) - [j87]Taylor C. Glenn, Alina Zare, Paul D. Gader:
Bayesian Fuzzy Clustering. IEEE Trans. Fuzzy Syst. 23(5): 1545-1561 (2015) - [j86]Seniha Esen Yüksel
, Jeremy Bolton, Paul D. Gader:
Multiple-Instance Hidden Markov Models With Applications to Landmine Detection. IEEE Trans. Geosci. Remote. Sens. 53(12): 6766-6775 (2015) - [c89]Yuan Zhou, Anand Rangarajan, Paul D. Gader:
A spatial compositional model for linear unmixing. WHISPERS 2015: 1-4 - [i1]Yuan Zhou, Anand Rangarajan, Paul D. Gader:
A spatial compositional model (SCM) for linear unmixing and endmember uncertainty estimation. CoRR abs/1509.09243 (2015) - 2014
- [j85]Rob Heylen
, Paul D. Gader:
Nonlinear Spectral Unmixing With a Linear Mixture of Intimate Mixtures Model. IEEE Geosci. Remote. Sens. Lett. 11(7): 1195-1199 (2014) - [j84]Wing-Kin Ma
, José M. Bioucas-Dias
, Tsung-Han Chan, Nicolas Gillis
, Paul D. Gader, Antonio J. Plaza
, Arul-Murugan Ambikapathi, Chong-Yung Chi:
A Signal Processing Perspective on Hyperspectral Unmixing: Insights from Remote Sensing. IEEE Signal Process. Mag. 31(1): 67-81 (2014) - [j83]Xuping Zhang, Jeremy Bolton, Paul D. Gader:
A New Learning Method for Continuous Hidden Markov Models for Subsurface Landmine Detection in Ground Penetrating Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(3): 813-819 (2014) - [j82]Alina Zare, Jeremy Bolton, Jocelyn Chanussot, Paul D. Gader:
Foreword to the Special Issue on Hyperspectral Image and Signal Processing. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(6): 1841-1843 (2014) - [j81]Rob Heylen
, Mario Parente, Paul D. Gader:
A Review of Nonlinear Hyperspectral Unmixing Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(6): 1844-1868 (2014) - [j80]Xiaoxiao Du
, Alina Zare, Paul D. Gader, Dmitri Dranishnikov:
Spatial and Spectral Unmixing Using the Beta Compositional Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(6): 1994-2003 (2014) - [c88]Pegah Massoudifar, Anand Rangarajan, Paul D. Gader:
Superpixel Estimation for Hyperspectral Imagery. CVPR Workshops 2014: 287-292 - [c87]Hamdi Jenzri, Hichem Frigui, Paul D. Gader:
Context dependent hyperspectral subpixel target detection. ICIP 2014: 5062-5066 - [c86]Hamdi Jenzri, Hichem Frigui, Paul D. Gader:
Robust Context Dependent Spectral Unmixing. ICPR 2014: 643-647 - [c85]Leila Kalantari, Paul D. Gader, Sarah Graves, Stephanie A. Bohlman:
Evaluating similarity measures for hyperspectral classification of tree species at Ordway-Swisher Biological Station. IGARSS 2014: 2691-2694 - [c84]Rob Heylen
, Paul Scheunders
, Anand Rangarajan, Paul D. Gader:
Nonlinear unmixing by using non-euclidean metrics in a linear unmixing chain. WHISPERS 2014: 1-4 - [c83]Pegah Massoudifar, Anand Rangarajan, Alina Zare, Paul D. Gader:
An integrated graph cuts segmentation and piece-wise convex unmixing approach for hyperspectral imaging. WHISPERS 2014: 1-4 - 2013
- [j79]Oualid Missaoui, Hichem Frigui, Paul D. Gader:
Multi-stream continuous hidden Markov models with application to landmine detection. EURASIP J. Adv. Signal Process. 2013: 40 (2013) - [j78]Alina Zare
, Paul D. Gader, George Casella:
Sampling Piecewise Convex Unmixing and Endmember Extraction. IEEE Trans. Geosci. Remote. Sens. 51(3-2): 1655-1665 (2013) - [j77]Alina Zare
, Paul D. Gader, Ouiem Bchir, Hichem Frigui:
Piecewise Convex Multiple-Model Endmember Detection and Spectral Unmixing. IEEE Trans. Geosci. Remote. Sens. 51(5-1): 2853-2862 (2013) - [c82]Dmitri Dranishnikov, Paul D. Gader, Alina Zare, Taylor C. Glenn:
Unmixing using a combined microscopic and macroscopic mixture model with distinct endmembers. EUSIPCO 2013: 1-5 - [c81]Taylor C. Glenn, Dmitri Dranishnikov, Paul D. Gader, Alina Zare:
Subpixel target detection in hyperspectral imagery using piece-wise convex spatial-spectral unmixing, possibilistic and fuzzy clustering, and co-registered LiDAR. IGARSS 2013: 1063-1066 - [c80]Jeremy Bolton, Paul D. Gader, Ami Gates:
Embedding multiple instances: Applications to hyperspectral image analysis. WHISPERS 2013: 1-4 - [c79]Taylor C. Glenn, Brandon Smock, Joseph N. Wilson, Paul D. Gader:
Context-dependent detection via Alarm-Set Fusion and segmentation. WHISPERS 2013: 1-4 - [c78]Rob Heylen
, Paul D. Gader, Paul Scheunders
:
Handling spectral variability with alternating angle minimization. WHISPERS 2013: 1-4 - [c77]Hamdi Jenzri, Hichem Frigui, Paul D. Gader:
Graph constrained multi-model unmixing using LIDAR information. WHISPERS 2013: 1-4 - [c76]Ce Yang, Won Suk Lee
, Paul D. Gader, Han Li:
Hyperspectral band selection using Kullback-Leibler divergence for blueberry fruit detection. WHISPERS 2013: 1-4 - [c75]Alina Zare, Paul D. Gader, Dmitri Dranishnikov, Taylor C. Glenn:
Spectral unmixing using the beta compositional model. WHISPERS 2013: 1-5 - 2012
- [j76]Hichem Frigui, Lijun Zhang, Paul D. Gader, Joseph N. Wilson, K. C. Ho, Andres Mendez-Vazquez:
An evaluation of several fusion algorithms for anti-tank landmine detection and discrimination. Inf. Fusion 13(2): 161-174 (2012) - [j75]Alina Zare
, Paul D. Gader, Karthik S. Gurumoorthy:
Directly Measuring Material Proportions Using Hyperspectral Compressive Sensing. IEEE Geosci. Remote. Sens. Lett. 9(3): 323-327 (2012) - [j74]José M. Bioucas-Dias
, Antonio Plaza
, Nicolas Dobigeon
, Mario Parente, Qian Du, Paul D. Gader, Jocelyn Chanussot:
Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 5(2): 354-379 (2012) - [j73]Ahmed Chamseddine Ben Abdallah, Hichem Frigui, Paul D. Gader:
Adaptive Local Fusion With Fuzzy Integrals. IEEE Trans. Fuzzy Syst. 20(5): 849-864 (2012) - [j72]Seniha Esen Yüksel
, Joseph N. Wilson, Paul D. Gader:
Twenty Years of Mixture of Experts. IEEE Trans. Neural Networks Learn. Syst. 23(8): 1177-1193 (2012) - [c74]Alina Zare, Ouiem Bchir, Hichem Frigui, Paul D. Gader:
Hyperspectral image analysis with piece-wise convex endmember estimation and spectral unmixing. ICIP 2012: 2681-2684 - [c73]Seniha Esen Yüksel, Paul D. Gader:
Mixture of HMM Experts with applications to landmine detection. IGARSS 2012: 6852-6855 - [c72]Hamdi Jenzri, Hichem Frigui, Paul D. Gader:
Context Dependent Spectral Unmixing. MLSP 2012: 1-6 - [c71]Seniha Esen Yüksel, Jeremy Bolton, Paul D. Gader:
Landmine detection with Multiple Instance Hidden Markov Models. MLSP 2012: 1-6 - [c70]Paul D. Gader, Dmitri Dranishnikov, Alina Zare, Jocelyn Chanussot:
A sparsity promoting bilinear unmixing model. WHISPERS 2012: 1-4 - [c69]Alina Zare, Paul D. Gader, Tim Allgire, Dmitri Dranishnikov, Ryan Close:
Bootstrapping for Piece-Wise Convex Endmember Distribution Detection. WHISPERS 2012: 1-4 - 2011
- [j71]Jeremy Bolton, Paul D. Gader, Hichem Frigui, Peter Torrione:
Random set framework for multiple instance learning. Inf. Sci. 181(11): 2061-2070 (2011) - [j70]Jeremy Bolton, Paul D. Gader:
Application of Multiple-Instance Learning for Hyperspectral Image Analysis. IEEE Geosci. Remote. Sens. Lett. 8(5): 889-893 (2011) - [j69]Gyeongyong Heo, Paul D. Gader:
Robust kernel discriminant analysis using fuzzy memberships. Pattern Recognit. 44(3): 716-723 (2011) - [j68]Oualid Missaoui, Hichem Frigui, Paul D. Gader:
Land-Mine Detection With Ground-Penetrating Radar Using Multistream Discrete Hidden Markov Models. IEEE Trans. Geosci. Remote. Sens. 49(6-1): 2080-2099 (2011) - [c68]Alina Zare
, Paul D. Gader:
Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering. FUZZ-IEEE 2011: 741-746 - [c67]Ryan Close, Joseph N. Wilson, Paul D. Gader:
A Bayesian approach to localized multi-kernel learning using the relevance vector machine. IGARSS 2011: 1103-1106 - [c66]Jeremy Bolton, Paul D. Gader:
Conjunctive formulation of the random set framework for multiple instance learning: Application to remote sensing. IGARSS 2011: 3582-3585 - [c65]Alina Zare
, Paul D. Gader, Jeremy Bolton, Seniha Esen Yüksel, Thierry Dubroca, Ryan Close, Rolf Hummel:
Sub-pixel target spectra estimation and detection using functions of multiple instances. WHISPERS 2011: 1-4 - 2010
- [j67]Ganesan Ramachandran, Paul D. Gader, Joseph N. Wilson:
GRANMA: Gradient Angle Model Algorithm on Wideband EMI Data for Land-Mine Detection. IEEE Geosci. Remote. Sens. Lett. 7(3): 535-539 (2010) - [j66]Hichem Frigui, Lijun Zhang, Paul D. Gader:
Context-Dependent Multisensor Fusion and Its Application to Land Mine Detection. IEEE Trans. Geosci. Remote. Sens. 48(6): 2528-2543 (2010) - [j65]Alina Zare
, Paul D. Gader:
PCE: Piecewise Convex Endmember Detection. IEEE Trans. Geosci. Remote. Sens. 48(6): 2620-2632 (2010) - [c64]Ahmed Chamseddine Ben Abdallah, Hichem Frigui, Paul D. Gader:
Local Fusion with Fuzzy Integrals. FUZZ-IEEE 2010: 1-7 - [c63]Gyeongyong Heo, Paul D. Gader:
An extension of global fuzzy c-means using kernel methods. FUZZ-IEEE 2010: 1-6 - [c62]Gyeongyong Heo, Paul D. Gader, Hichem Frigui:
A noise robust variant of context extraction for local fusion. FUZZ-IEEE 2010: 1-6 - [c61]Ahmed Chamseddine Ben Abdallah, Hichem Frigui, Paul D. Gader:
Adaptive Local Fusion with Neural Networks. ICANN (2) 2010: 486-491 - [c60]Alina Zare
, Paul D. Gader:
Pattern Recognition Using Functions of Multiple Instances. ICPR 2010: 1092-1095 - [c59]Seniha Esen Yüksel, Paul D. Gader:
Variational Mixture of Experts for Classification with Applications to Landmine Detection. ICPR 2010: 2981-2984 - [c58]Jeremy Bolton, Paul D. Gader:
Cross Entropy Optimization of the Random Set Framework for Multiple Instance Learning. ICPR 2010: 3907-3910 - [c57]Alina Zare
, Paul D. Gader:
Robust Endmember detection using L1 norm factorization. IGARSS 2010: 971-974 - [c56]Oualid Missaoui, Hichem Frigui, Paul D. Gader:
Model level fusion of edge histogram descriptors and gabor wavelets for landmine detection with ground penetrating radar. IGARSS 2010: 3378-3381 - [c55]Jeremy Bolton, Paul D. Gader:
Multiple instance learning for hyperspectral image analysis. IGARSS 2010: 4232-4235 - [c54]Ouiem Bchir, Hichem Frigui, Alina Zare
, Paul D. Gader:
Multiple model endmember detection based on spectral and spatial information. WHISPERS 2010: 1-4 - [c53]Jeremy Bolton, Paul D. Gader:
Spatial multiple instance learning for hyperspectral image analysis. WHISPERS 2010: 1-4 - [c52]Alina Zare
, Ouiem Bchir, Hichem Frigui, Paul D. Gader:
A comparison of deterministic and probabilistic approaches to endmember representation. WHISPERS 2010: 1-4 - [c51]Alina Zare
, Ouiem Bchir, Hichem Frigui, Paul D. Gader:
Spatially-smooth piece-wise convex endmember detection. WHISPERS 2010: 1-4
2000 – 2009
- 2009
- [j64]Gyeongyong Heo, Paul D. Gader, Hichem Frigui:
RKF-PCA: Robust kernel fuzzy PCA. Neural Networks 22(5-6): 642-650 (2009) - [j63]Hichem Frigui, Paul D. Gader:
Detection and Discrimination of Land Mines in Ground-Penetrating Radar Based on Edge Histogram Descriptors and a Possibilistic K-Nearest Neighbor Classifier. IEEE Trans. Fuzzy Syst. 17(1): 185-199 (2009) - [j62]Raazia Mazhar, Paul D. Gader, Joseph N. Wilson:
Matching-Pursuits Dissimilarity Measure for Shape-Based Comparison and Classification of High-Dimensional Data. IEEE Trans. Fuzzy Syst. 17(5): 1175-1188 (2009) - [j61]Jeremy Bolton, Paul D. Gader:
Random Set Framework for Context-Based Classification With Hyperspectral Imagery. IEEE Trans. Geosci. Remote. Sens. 47(11): 3810-3821 (2009) - [j60]John McElroy, Paul D. Gader:
Generalized Encoding and Decoding Operators for Lattice-Based Associative Memories. IEEE Trans. Neural Networks 20(10): 1674-1678 (2009) - [c50]Gyeongyong Heo, Paul D. Gader:
Fuzzy SVM for noisy data: A robust membership calculation method. FUZZ-IEEE 2009: 431-436 - [c49]Ahmed Chamseddine Ben Abdallah, Hichem Frigui, Paul D. Gader:
Context extraction for local fusion using fuzzy clustering and feature discrimination. FUZZ-IEEE 2009: 490-495 - [c48]Oualid Missaoui, Hichem Frigui, Paul D. Gader:
Discriminative Multi-stream Discrete Hidden Markov Models. ICMLA 2009: 178-183 - [c47]Lijun Zhang, Hichem Frigui, Paul D. Gader:
Context-Dependent Fusion of Multiple Algorithms with Minimum Classification Error Learning. ICMLA 2009: 190-195 - [c46]Gyeongyong Heo, Paul D. Gader:
Learning the number of gaussian components using hypothesis test. IJCNN 2009: 1206-1212 - [c45]Gyeongyong Heo, Paul D. Gader, Hichem Frigui:
Robust kernel PCA using fuzzy membership. IJCNN 2009: 1213-1220 - [c44]Lijun Zhang, Hichem Frigui, Paul D. Gader, Jeremy Bolton:
Context-Dependent Fusion for mine detection using Airborne Hyperspectral Imagery. WHISPERS 2009: 1-4 - [c43]Jeremy Bolton, Paul D. Gader:
A random measure approach for context estimation in hyperspectral imagery. WHISPERS 2009: 1-4 - [c42]Alina Zare, Paul D. Gader:
Context-based endmember detection for hyperspectral imagery. WHISPERS 2009: 1-4 - 2008
- [j59]Alina Zare, Paul D. Gader:
Hyperspectral Band Selection and Endmember Detection Using Sparsity Promoting Priors. IEEE Geosci. Remote. Sens. Lett. 5(2): 256-260 (2008) - [j58]Andres Mendez-Vazquez, Paul D. Gader, James M. Keller, Kenneth Chamberlin:
Minimum Classification Error Training for Choquet Integrals With Applications to Landmine Detection. IEEE Trans. Fuzzy Syst. 16(1): 225-238 (2008) - [j57]Jeremy Bolton, Paul D. Gader, Joseph N. Wilson:
Discrete Choquet Integral as a Distance Metric. IEEE Trans. Fuzzy Syst. 16(4): 1107-1110 (2008) - [j56]Alina Zare
, Jeremy Bolton, Paul D. Gader, Miranda Schatten:
Vegetation Mapping for Landmine Detection Using Long-Wave Hyperspectral Imagery. IEEE Trans. Geosci. Remote. Sens. 46(1): 172-178 (2008) - [j55]K. C. Ho, Lawrence Carin
, Paul D. Gader, Joseph N. Wilson:
An Investigation of Using the Spectral Characteristics From Ground Penetrating Radar for Landmine/Clutter Discrimination. IEEE Trans. Geosci. Remote. Sens. 46(4): 1177-1191 (2008) - [c41]Raazia Mazhar, Paul D. Gader, Joseph N. Wilson:
A matching pursuit based similarity measure for fuzzy clustering and classification of signals. FUZZ-IEEE 2008: 1950-1955 - [c40]Jeremy Bolton, Paul D. Gader:
Random set model for context-based classification. FUZZ-IEEE 2008: 1999-2006 - [c39]Andres Mendez-Vazquez, Paul D. Gader:
Maximum A Posteriori EM MCE Logistic LASSO for learning fuzzy measures. FUZZ-IEEE 2008: 2007-2013 - [c38]K. C. Ho, Joseph N. Wilson, Paul D. Gader:
On the use of aggregation operator for humanitarian demining using hand-held GPR. FUZZ-IEEE 2008: 2103-2108 - [c37]