


Остановите войну!
for scientists:


default search action
Finale Doshi-Velez
Finale Doshi
Person information

- affiliation: MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, USA
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
showing all ?? records
2020 – today
- 2022
- [j19]Anna L. Trella
, Kelly W. Zhang
, Inbal Nahum-Shani
, Vivek Shetty
, Finale Doshi-Velez
, Susan A. Murphy
:
Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines. Algorithms 15(8): 255 (2022) - [c79]Jeffrey Chiu, Rajat Mittal, Neehal Tumma, Abhishek Sharma, Finale Doshi-Velez:
A Joint Learning Approach for Semi-supervised Neural Topic Modeling. SPNLP@ACL 2022: 40-51 - [c78]Harvineet Singh, Shalmali Joshi, Finale Doshi-Velez, Himabindu Lakkaraju:
Towards Robust Off-Policy Evaluation via Human Inputs. AIES 2022: 686-699 - [c77]Beau Coker, Wessel P. Bruinsma, David R. Burt, Weiwei Pan, Finale Doshi-Velez:
Wide Mean-Field Bayesian Neural Networks Ignore the Data. AISTATS 2022: 5276-5333 - [c76]Ramtin Keramati, Omer Gottesman, Leo Anthony Celi, Finale Doshi-Velez, Emma Brunskill:
Identification of Subgroups With Similar Benefits in Off-Policy Policy Evaluation. CHIL 2022: 397-410 - [c75]Q. Vera Liao, Yunfeng Zhang, Ronny Luss, Finale Doshi-Velez, Amit Dhurandhar:
Connecting Algorithmic Research and Usage Contexts: A Perspective of Contextualized Evaluation for Explainable AI. HCOMP 2022: 147-159 - [c74]Yaniv Yacoby, Ben Green, Christopher L. Griffin, Finale Doshi-Velez:
"If it didn't happen, why would I change my decision?": How Judges Respond to Counterfactual Explanations for the Public Safety Assessment. HCOMP 2022: 219-230 - [i94]Sonali Parbhoo, Shalmali Joshi, Finale Doshi-Velez:
Generalizing Off-Policy Evaluation From a Causal Perspective For Sequential Decision-Making. CoRR abs/2201.08262 (2022) - [i93]Beau Coker, Wessel P. Bruinsma, David R. Burt, Weiwei Pan, Finale Doshi-Velez:
Wide Mean-Field Bayesian Neural Networks Ignore the Data. CoRR abs/2202.11670 (2022) - [i92]Jeffrey Chiu, Rajat Mittal, Neehal Tumma, Abhishek Sharma, Finale Doshi-Velez:
A Joint Learning Approach for Semi-supervised Neural Topic Modeling. CoRR abs/2204.03208 (2022) - [i91]Yaniv Yacoby, Ben Green, Christopher L. Griffin, Finale Doshi-Velez:
"If it didn't happen, why would I change my decision?": How Judges Respond to Counterfactual Explanations for the Public Safety Assessment. CoRR abs/2205.05424 (2022) - [i90]Anna L. Trella, Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez, Susan A. Murphy:
Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-implementation Guidelines. CoRR abs/2206.03944 (2022) - [i89]Q. Vera Liao, Yunfeng Zhang, Ronny Luss, Finale Doshi-Velez, Amit Dhurandhar:
Connecting Algorithmic Research and Usage Contexts: A Perspective of Contextualized Evaluation for Explainable AI. CoRR abs/2206.10847 (2022) - [i88]Jiayu Yao, Sonali Parbhoo, Weiwei Pan, Finale Doshi-Velez:
Policy Optimization with Sparse Global Contrastive Explanations. CoRR abs/2207.06269 (2022) - [i87]Kelly W. Zhang, Omer Gottesman, Finale Doshi-Velez:
A Bayesian Approach to Learning Bandit Structure in Markov Decision Processes. CoRR abs/2208.00250 (2022) - [i86]Mark Penrod, Harrison Termotto, Varshini Reddy, Jiayu Yao, Finale Doshi-Velez, Weiwei Pan:
Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry. CoRR abs/2208.01705 (2022) - [i85]Anna L. Trella, Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez, Susan A. Murphy:
Reward Design For An Online Reinforcement Learning Algorithm Supporting Oral Self-Care. CoRR abs/2208.07406 (2022) - [i84]Harvineet Singh, Shalmali Joshi, Finale Doshi-Velez, Himabindu Lakkaraju:
Towards Robust Off-Policy Evaluation via Human Inputs. CoRR abs/2209.08682 (2022) - [i83]Michael L. Littman, Ifeoma Ajunwa, Guy Berger, Craig Boutilier, Morgan Currie, Finale Doshi-Velez, Gillian K. Hadfield, Michael C. Horowitz, Charles Isbell, Hiroaki Kitano, Karen Levy, Terah Lyons, Melanie Mitchell, Julie Shah, Steven Sloman, Shannon Vallor, Toby Walsh:
Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report. CoRR abs/2210.15767 (2022) - [i82]Zixi Chen, Varshini Subhash, Marton Havasi, Weiwei Pan, Finale Doshi-Velez:
Does the explanation satisfy your needs?: A unified view of properties of explanations. CoRR abs/2211.05667 (2022) - [i81]Sanjana Narayanan, Isaac Lage, Finale Doshi-Velez:
(When) Are Contrastive Explanations of Reinforcement Learning Helpful? CoRR abs/2211.07719 (2022) - [i80]Jiayu Yao, Yaniv Yacoby, Beau Coker, Weiwei Pan, Finale Doshi-Velez:
An Empirical Analysis of the Advantages of Finite- v.s. Infinite-Width Bayesian Neural Networks. CoRR abs/2211.09184 (2022) - [i79]Eura Shin, Siddharth Swaroop, Weiwei Pan, Susan A. Murphy, Finale Doshi-Velez:
Modeling Mobile Health Users as Reinforcement Learning Agents. CoRR abs/2212.00863 (2022) - 2021
- [j18]Been Kim, Finale Doshi-Velez:
Machine Learning Techniques for Accountability. AI Mag. 42(1): 47-52 (2021) - [j17]Lifeng Jin, Lane Schwartz, Finale Doshi-Velez, Timothy A. Miller, William Schuler:
Depth-Bounded Statistical PCFG Induction as a Model of Human Grammar Acquisition. Comput. Linguistics 47(1): 181-216 (2021) - [j16]Mike Wu, Sonali Parbhoo, Michael C. Hughes, Volker Roth, Finale Doshi-Velez:
Optimizing for Interpretability in Deep Neural Networks with Tree Regularization. J. Artif. Intell. Res. 72: 1-37 (2021) - [c73]Andrew Slavin Ross, Nina Chen, Elisa Zhao Hang, Elena L. Glassman, Finale Doshi-Velez:
Evaluating the Interpretability of Generative Models by Interactive Reconstruction. CHI 2021: 80:1-80:15 - [c72]Maia Jacobs, Jeffrey He, Melanie F. Pradier, Barbara Lam, Andrew C. Ahn, Thomas H. McCoy, Roy H. Perlis, Finale Doshi-Velez, Krzysztof Z. Gajos:
Designing AI for Trust and Collaboration in Time-Constrained Medical Decisions: A Sociotechnical Lens. CHI 2021: 659:1-659:14 - [c71]Andrew Slavin Ross, Finale Doshi-Velez:
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement. ICML 2021: 9084-9094 - [c70]Simon P. Shen, Yecheng Jason Ma, Omer Gottesman, Finale Doshi-Velez:
State Relevance for Off-Policy Evaluation. ICML 2021: 9537-9546 - [c69]Jiayu Yao, Emma Brunskill, Weiwei Pan, Susan A. Murphy, Finale Doshi-Velez:
Power Constrained Bandits. MLHC 2021: 209-259 - [c68]Kai Wang, Sanket Shah, Haipeng Chen, Andrew Perrault, Finale Doshi-Velez, Milind Tambe:
Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Making by Reinforcement Learning. NeurIPS 2021: 8795-8806 - [c67]Tianyi Zhang, Thomas H. McCoy, Roy H. Perlis, Finale Doshi-Velez, Elena L. Glassman:
Interactive Cohort Analysis and Hypothesis Discovery by Exploring Temporal Patterns in Population-Level Health Records. VAHC 2021: 14-18 - [i78]Kristine Zhang, Yuanheng Wang, Jianzhun Du, Brian Chu, Leo Anthony Celi, Ryan Kindle, Finale Doshi-Velez:
Identifying Decision Points for Safe and Interpretable Reinforcement Learning in Hypotension Treatment. CoRR abs/2101.03309 (2021) - [i77]Melanie F. Pradier, Javier Zazo, Sonali Parbhoo, Roy H. Perlis, Maurizio Zazzi, Finale Doshi-Velez:
Preferential Mixture-of-Experts: Interpretable Models that Rely on Human Expertise as much as Possible. CoRR abs/2101.05360 (2021) - [i76]Maia Jacobs, Jeffrey He, Melanie F. Pradier, Barbara Lam, Andrew C. Ahn, Thomas H. McCoy, Roy H. Perlis, Finale Doshi-Velez, Krzysztof Z. Gajos:
Designing AI for Trust and Collaboration in Time-Constrained Medical Decisions: A Sociotechnical Lens. CoRR abs/2102.00593 (2021) - [i75]Andrew Slavin Ross, Nina Chen, Elisa Zhao Hang, Elena L. Glassman, Finale Doshi-Velez:
Evaluating the Interpretability of Generative Models by Interactive Reconstruction. CoRR abs/2102.01264 (2021) - [i74]Andrew Slavin Ross, Finale Doshi-Velez:
Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement. CoRR abs/2102.05185 (2021) - [i73]Harvineet Singh, Shalmali Joshi, Finale Doshi-Velez, Himabindu Lakkaraju:
Learning Under Adversarial and Interventional Shifts. CoRR abs/2103.15933 (2021) - [i72]Kai Wang, Sanket Shah, Haipeng Chen, Andrew Perrault, Finale Doshi-Velez, Milind Tambe:
Learning MDPs from Features: Predict-Then-Optimize for Sequential Decision Problems by Reinforcement Learning. CoRR abs/2106.03279 (2021) - [i71]Beau Coker, Weiwei Pan, Finale Doshi-Velez:
Wide Mean-Field Variational Bayesian Neural Networks Ignore the Data. CoRR abs/2106.07052 (2021) - [i70]Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez, Weiwei Pan:
Promises and Pitfalls of Black-Box Concept Learning Models. CoRR abs/2106.13314 (2021) - [i69]Eura Shin, Pedja Klasnja, Susan A. Murphy, Finale Doshi-Velez:
Online structural kernel selection for mobile health. CoRR abs/2107.09949 (2021) - [i68]Simon P. Shen, Yecheng Jason Ma, Omer Gottesman, Finale Doshi-Velez:
State Relevance for Off-Policy Evaluation. CoRR abs/2109.06310 (2021) - [i67]Shalmali Joshi, Sonali Parbhoo, Finale Doshi-Velez:
Pre-emptive learning-to-defer for sequential medical decision-making under uncertainty. CoRR abs/2109.06312 (2021) - [i66]Sarah Rathnam, Susan A. Murphy, Finale Doshi-Velez:
Comparison and Unification of Three Regularization Methods in Batch Reinforcement Learning. CoRR abs/2109.08134 (2021) - [i65]Nari Johnson, Sonali Parbhoo, Andrew Slavin Ross, Finale Doshi-Velez:
Learning Predictive and Interpretable Timeseries Summaries from ICU Data. CoRR abs/2109.11043 (2021) - [i64]Abhishek Sharma, Catherine Zeng, Sanjana Narayanan, Sonali Parbhoo, Finale Doshi-Velez:
On Learning Prediction-Focused Mixtures. CoRR abs/2110.13221 (2021) - [i63]Ramtin Keramati, Omer Gottesman, Leo Anthony Celi, Finale Doshi-Velez, Emma Brunskill:
Identification of Subgroups With Similar Benefits in Off-Policy Policy Evaluation. CoRR abs/2111.14272 (2021) - 2020
- [c66]Andrew Slavin Ross, Weiwei Pan, Leo A. Celi, Finale Doshi-Velez:
Ensembles of Locally Independent Prediction Models. AAAI 2020: 5527-5536 - [c65]Mike Wu, Sonali Parbhoo, Michael C. Hughes, Ryan Kindle, Leo A. Celi, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez:
Regional Tree Regularization for Interpretability in Deep Neural Networks. AAAI 2020: 6413-6421 - [c64]Joseph Futoma, Michael C. Hughes, Finale Doshi-Velez:
POPCORN: Partially Observed Prediction Constrained Reinforcement Learning. AISTATS 2020: 3578-3588 - [c63]Jason Ren, Russell Kunes, Finale Doshi-Velez:
Prediction Focused Topic Models via Feature Selection. AISTATS 2020: 4420-4429 - [c62]Mingyu Lu, Zachary Shahn, Daby Sow, Finale Doshi-Velez, Li-Wei H. Lehman:
Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients. AMIA 2020 - [c61]Niranjani Prasad, Barbara E. Engelhardt, Finale Doshi-Velez:
Defining admissible rewards for high-confidence policy evaluation in batch reinforcement learning. CHIL 2020: 1-9 - [c60]Omer Gottesman, Joseph Futoma, Yao Liu, Sonali Parbhoo, Leo A. Celi, Emma Brunskill, Finale Doshi-Velez:
Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential Transitions. ICML 2020: 3658-3667 - [c59]Han-Ching Ou, Kai Wang, Finale Doshi-Velez, Milind Tambe:
Active Screening on Recurrent Diseases Contact Networks with Uncertainty: A Reinforcement Learning Approach. MABS 2020: 54-65 - [c58]Sonali Parbhoo, Mario Wieser, Volker Roth, Finale Doshi-Velez:
Transfer Learning from Well-Curated to Less-Resourced Populations with HIV. MLHC 2020: 589-609 - [c57]Jianzhun Du, Joseph Futoma, Finale Doshi-Velez:
Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs. NeurIPS 2020 - [c56]Wanqian Yang, Lars Lorch, Moritz A. Graule, Himabindu Lakkaraju, Finale Doshi-Velez:
Incorporating Interpretable Output Constraints in Bayesian Neural Networks. NeurIPS 2020 - [c55]Beau Coker, Melanie Fernandes Pradier, Finale Doshi-Velez:
PoRB-Nets: Poisson Process Radial Basis Function Networks. UAI 2020: 1338-1347 - [e6]Finale Doshi-Velez, Jim Fackler, Ken Jung, David C. Kale, Rajesh Ranganath, Byron C. Wallace, Jenna Wiens:
Proceedings of the Machine Learning for Healthcare Conference, MLHC 2020, 7-8 August 2020, Virtual Event, Durham, NC, USA. Proceedings of Machine Learning Research 126, PMLR 2020 [contents] - [i62]Joseph Futoma, Muhammad A. Masood, Finale Doshi-Velez:
Identifying Distinct, Effective Treatments for Acute Hypotension with SODA-RL: Safely Optimized Diverse Accurate Reinforcement Learning. CoRR abs/2001.03224 (2020) - [i61]Joseph Futoma, Michael C. Hughes, Finale Doshi-Velez:
POPCORN: Partially Observed Prediction COnstrained ReiNforcement Learning. CoRR abs/2001.04032 (2020) - [i60]Omer Gottesman, Joseph Futoma, Yao Liu, Sonali Parbhoo, Leo Anthony Celi, Emma Brunskill, Finale Doshi-Velez:
Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential Transitions. CoRR abs/2002.03478 (2020) - [i59]Yaniv Yacoby, Weiwei Pan, Finale Doshi-Velez:
Characterizing and Avoiding Problematic Global Optima of Variational Autoencoders. CoRR abs/2003.07756 (2020) - [i58]Jiayu Yao, Emma Brunskill, Weiwei Pan, Susan A. Murphy, Finale Doshi-Velez:
Power-Constrained Bandits. CoRR abs/2004.06230 (2020) - [i57]Mingyu Lu, Zachary Shahn, Daby Sow, Finale Doshi-Velez, Li-Wei H. Lehman:
Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Sepsis Treatment. CoRR abs/2005.04301 (2020) - [i56]Yash Nair, Finale Doshi-Velez:
PAC Bounds for Imitation and Model-based Batch Learning of Contextual Markov Decision Processes. CoRR abs/2006.06352 (2020) - [i55]Sujay Thakur, Cooper Lorsung, Yaniv Yacoby, Finale Doshi-Velez, Weiwei Pan:
Learned Uncertainty-Aware (LUNA) Bases for Bayesian Regression using Multi-Headed Auxiliary Networks. CoRR abs/2006.11695 (2020) - [i54]Jianzhun Du, Joseph Futoma, Finale Doshi-Velez:
Model-based Reinforcement Learning for Semi-Markov Decision Processes with Neural ODEs. CoRR abs/2006.16210 (2020) - [i53]Théo Guénais, Dimitris Vamvourellis, Yaniv Yacoby, Finale Doshi-Velez, Weiwei Pan:
BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty. CoRR abs/2007.06096 (2020) - [i52]Yaniv Yacoby, Weiwei Pan, Finale Doshi-Velez:
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks. CoRR abs/2007.07124 (2020) - [i51]Wanqian Yang, Lars Lorch, Moritz A. Graule, Himabindu Lakkaraju, Finale Doshi-Velez:
Incorporating Interpretable Output Constraints in Bayesian Neural Networks. CoRR abs/2010.10969 (2020) - [i50]Isaac Lage, Finale Doshi-Velez:
Learning Interpretable Concept-Based Models with Human Feedback. CoRR abs/2012.02898 (2020) - [i49]Elisa Bertino, Finale Doshi-Velez, Maria L. Gini, Daniel Lopresti, David Parkes:
Artificial Intelligence & Cooperation. CoRR abs/2012.06034 (2020)
2010 – 2019
- 2019
- [j15]Ofra Amir
, Finale Doshi-Velez, David Sarne:
Summarizing agent strategies. Auton. Agents Multi Agent Syst. 33(5): 628-644 (2019) - [j14]Muhammad A. Masood, Finale Doshi-Velez:
A Particle-Based Variational Approach to Bayesian Non-negative Matrix Factorization. J. Mach. Learn. Res. 20: 90:1-90:56 (2019) - [j13]Soumya Ghosh, Jiayu Yao, Finale Doshi-Velez:
Model Selection in Bayesian Neural Networks via Horseshoe Priors. J. Mach. Learn. Res. 20: 182:1-182:46 (2019) - [j12]Angela Fan
, Finale Doshi-Velez, Luke Miratrix:
Assessing topic model relevance: Evaluation and informative priors. Stat. Anal. Data Min. 12(3): 210-222 (2019) - [c54]Yaniv Yacoby, Weiwei Pan, Finale Doshi-Velez:
Characterizing and Avoiding Problematic Global Optima of Variational Autoencoders. AABI 2019: 1-17 - [c53]Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller, Lane Schwartz, William Schuler:
Unsupervised Learning of PCFGs with Normalizing Flow. ACL (1) 2019: 2442-2452 - [c52]Isaac Lage, Daphna Lifschitz, Finale Doshi-Velez, Ofra Amir:
Toward Robust Policy Summarization. AAMAS 2019: 2081-2083 - [c51]Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Samuel J. Gershman, Finale Doshi-Velez:
Human Evaluation of Models Built for Interpretability. HCOMP 2019: 59-67 - [c50]Omer Gottesman, Yao Liu, Scott Sussex, Emma Brunskill, Finale Doshi-Velez:
Combining parametric and nonparametric models for off-policy evaluation. ICML 2019: 2366-2375 - [c49]Isaac Lage, Daphna Lifschitz, Finale Doshi-Velez, Ofra Amir:
Exploring Computational User Models for Agent Policy Summarization. IJCAI 2019: 1401-1407 - [c48]Donghun Lee, Srivatsan Srinivasan, Finale Doshi-Velez:
Truly Batch Apprenticeship Learning with Deep Successor Features. IJCAI 2019: 5909-5915 - [c47]Muhammad A. Masood, Finale Doshi-Velez:
Diversity-Inducing Policy Gradient: Using Maximum Mean Discrepancy to Find a Set of Diverse Policies. IJCAI 2019: 5923-5929 - [e5]Finale Doshi-Velez, Jim Fackler, Ken Jung, David C. Kale, Rajesh Ranganath, Byron C. Wallace, Jenna Wiens:
Proceedings of the Machine Learning for Healthcare Conference, MLHC 2019, 9-10 August 2019, Ann Arbor, Michigan, USA. Proceedings of Machine Learning Research 106, PMLR 2019 [contents] - [i48]Xuefeng Peng, Yi Ding, David Wihl, Omer Gottesman, Matthieu Komorowski, Li-Wei H. Lehman, Andrew Slavin Ross, Aldo Faisal, Finale Doshi-Velez:
Improving Sepsis Treatment Strategies by Combining Deep and Kernel-Based Reinforcement Learning. CoRR abs/1901.04670 (2019) - [i47]Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Sam Gershman, Finale Doshi-Velez:
An Evaluation of the Human-Interpretability of Explanation. CoRR abs/1902.00006 (2019) - [i46]Donghun Lee, Srivatsan Srinivasan, Finale Doshi-Velez:
Truly Batch Apprenticeship Learning with Deep Successor Features. CoRR abs/1903.10077 (2019) - [i45]Omer Gottesman, Yao Liu, Scott Sussex, Emma Brunskill, Finale Doshi-Velez:
Combining Parametric and Nonparametric Models for Off-Policy Evaluation. CoRR abs/1905.05787 (2019) - [i44]Wanqian Yang, Lars Lorch, Moritz A. Graule, Srivatsan Srinivasan, Anirudh Suresh, Jiayu Yao, Melanie F. Pradier, Finale Doshi-Velez:
Output-Constrained Bayesian Neural Networks. CoRR abs/1905.06287 (2019) - [i43]Omer Gottesman, Weiwei Pan, Finale Doshi-Velez:
A general method for regularizing tensor decomposition methods via pseudo-data. CoRR abs/1905.10424 (2019) - [i42]Niranjani Prasad
, Barbara E. Engelhardt, Finale Doshi-Velez:
Defining Admissible Rewards for High Confidence Policy Evaluation. CoRR abs/1905.13167 (2019) - [i41]Isaac Lage, Daphna Lifschitz, Finale Doshi-Velez, Ofra Amir:
Exploring Computational User Models for Agent Policy Summarization. CoRR abs/1905.13271 (2019) - [i40]Muhammad A. Masood, Finale Doshi-Velez:
Diversity-Inducing Policy Gradient: Using Maximum Mean Discrepancy to Find a Set of Diverse Policies. CoRR abs/1906.00088 (2019) - [i39]Jiayu Yao, Weiwei Pan, Soumya Ghosh, Finale Doshi-Velez:
Quality of Uncertainty Quantification for Bayesian Neural Network Inference. CoRR abs/1906.09686 (2019) - [i38]Mike Wu, Sonali Parbhoo, Michael C. Hughes, Ryan Kindle, Leo A. Celi, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez:
Regional Tree Regularization for Interpretability in Black Box Models. CoRR abs/1908.04494 (2019) - [i37]Mike Wu, Sonali Parbhoo, Michael C. Hughes, Volker Roth, Finale Doshi-Velez:
Optimizing for Interpretability in Deep Neural Networks with Tree Regularization. CoRR abs/1908.05254 (2019) - [i36]Jason Ren, Russell Kunes, Finale Doshi-Velez:
Prediction Focused Topic Models via Vocab Selection. CoRR abs/1910.05495 (2019) - [i35]Yaniv Yacoby
, Weiwei Pan, Finale Doshi-Velez:
Learning Deep Bayesian Latent Variable Regression Models that Generalize: When Non-identifiability is a Problem. CoRR abs/1911.00569 (2019) - [i34]Andrew Slavin Ross, Weiwei Pan, Leo Anthony Celi, Finale Doshi-Velez:
Ensembles of Locally Independent Prediction Models. CoRR abs/1911.01291 (2019) - [i33]Jason Ren, Russell Kunes, Finale Doshi-Velez:
Prediction Focused Topic Models for Electronic Health Records. CoRR abs/1911.08551 (2019) - [i32]Beau Coker, Melanie F. Pradier, Finale Doshi-Velez:
Towards Expressive Priors for Bayesian Neural Networks: Poisson Process Radial Basis Function Networks. CoRR abs/1912.05779 (2019) - 2018
- [j11]Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller, William Schuler, Lane Schwartz:
Unsupervised Grammar Induction with Depth-bounded PCFG. Trans. Assoc. Comput. Linguistics 6: 211-224 (2018) - [j10]Michael Glueck, Mahdi Pakdaman Naeini, Finale Doshi-Velez, Fanny Chevalier, Azam Khan, Daniel Wigdor, Michael Brudno:
PhenoLines: Phenotype Comparison Visualizations for Disease Subtyping via Topic Models. IEEE Trans. Vis. Comput. Graph. 24(1): 371-381 (2018) - [c46]Andrew Slavin Ross, Finale Doshi-Velez:
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing Their Input Gradients. AAAI 2018: 1660-1669 - [c45]Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Finale Doshi-Velez:
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability. AAAI 2018: 1670-1678 - [c44]Michael C. Hughes, Gabriel Hope, Leah Weiner, Thomas H. McCoy Jr., Roy H. Perlis, Erik B. Sudderth, Finale Doshi-Velez:
Semi-Supervised Prediction-Constrained Topic Models. AISTATS 2018: 1067-1076 - [c43]Omer Gottesman, Weiwei Pan, Finale Doshi-Velez:
Weighted Tensor Decomposition for Learning Latent Variables with Partial Data. AISTATS 2018: 1664-1672 - [c42]Xuefeng Peng, Yi Ding, David Wihl, Omer Gottesman, Matthieu Komorowski, Li-Wei H. Lehman, Andrew Slavin Ross, Aldo Faisal, Finale Doshi-Velez:
Improving Sepsis Treatment Strategies by Combining Deep and Kernel-Based Reinforcement Learning. AMIA 2018 - [c41]Ofra Amir, Finale Doshi-Velez, David Sarne:
Agent Strategy Summarization. AAMAS 2018: 1203-1207 - [c40]Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller, William Schuler, Lane Schwartz:
Depth-bounding is effective: Improvements and Evaluation of Unsupervised PCFG Induction. EMNLP 2018: 2721-2731 - [c39]Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, Steffen Udluft:
Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning. ICML 2018: 1192-1201 - [c38]Soumya Ghosh, Jiayu Yao, Finale Doshi-Velez:
Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors. ICML 2018: 1739-1748 - [c37]Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A. Faisal, Finale Doshi-Velez, Emma Brunskill:
Representation Balancing MDPs for Off-policy Policy Evaluation. NeurIPS 2018: 2649-2658 - [c36]