


Остановите войну!
for scientists:
Rio Yokota
Person information

Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2022
- [j15]Kazuki Osawa
, Yohei Tsuji
, Yuichiro Ueno
, Akira Naruse
, Chuan-Sheng Foo
, Rio Yokota
:
Scalable and Practical Natural Gradient for Large-Scale Deep Learning. IEEE Trans. Pattern Anal. Mach. Intell. 44(1): 404-415 (2022) - [i24]Hiroyuki Ootomo, Rio Yokota:
Recovering single precision accuracy from Tensor Cores while surpassing the FP32 theoretical peak performance. CoRR abs/2203.03341 (2022) - 2021
- [d1]Tingyu Wang
, Rio Yokota
, Lorena A. Barba
:
ExaFMM: a high-performance fast multipole method library with C++ and Python interfaces. J. Open Source Softw. 6(61): 3145 (2021) - [c24]Shun Iwase, Xingyu Liu, Rawal Khirodkar, Rio Yokota, Kris M. Kitani:
RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering. ICCV 2021: 3283-3292 - [i23]Shun Iwase, Xingyu Liu, Rawal Khirodkar, Rio Yokota, Kris M. Kitani:
RePOSE: Real-Time Iterative Rendering and Refinement for 6D Object Pose Estimation. CoRR abs/2104.00633 (2021) - [i22]Hana Hoshino, Kei Ota, Asako Kanezaki, Rio Yokota:
OPIRL: Sample Efficient Off-Policy Inverse Reinforcement Learning via Distribution Matching. CoRR abs/2109.04307 (2021) - 2020
- [c23]Rise Ooi, Takeshi Iwashita, Takeshi Fukaya, Akihiro Ida, Rio Yokota:
Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in BEM Analysis. HPC Asia 2020: 92-101 - [c22]Yuichiro Ueno, Kazuki Osawa, Yohei Tsuji, Akira Naruse, Rio Yokota:
Rich Information is Affordable: A Systematic Performance Analysis of Second-order Optimization Using K-FAC. KDD 2020: 2145-2153 - [i21]Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Chuan-Sheng Foo, Rio Yokota:
Scalable and Practical Natural Gradient for Large-Scale Deep Learning. CoRR abs/2002.06015 (2020) - [i20]Kento Doi, Ryuhei Hamaguchi, Shun Iwase, Rio Yokota, Yutaka Matsuo, Ken Sakurada:
Epipolar-Guided Deep Object Matching for Scene Change Detection. CoRR abs/2007.15540 (2020)
2010 – 2019
- 2019
- [j14]Ichitaro Yamazaki
, Akihiro Ida, Rio Yokota
, Jack J. Dongarra:
Distributed-memory lattice H-matrix factorization. Int. J. High Perform. Comput. Appl. 33(5) (2019) - [j13]Akihiro Ida, Hiroshi Nakashima, Tasuku Hiraishi, Ichitaro Yamazaki, Rio Yokota, Takeshi Iwashita:
QR Factorization of Block Low-rank Matrices with Weak Admissibility Condition. J. Inf. Process. 27: 831-839 (2019) - [j12]Mustafa Abdul Jabbar
, Mohammed A. Al Farhan
, Noha Al-Harthi, Rui Chen
, Rio Yokota, Hakan Bagci, David E. Keyes:
Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering. SIAM J. Sci. Comput. 41(3): C245-C268 (2019) - [c21]Yuichiro Ueno, Rio Yokota:
Exhaustive Study of Hierarchical AllReduce Patterns for Large Messages Between GPUs. CCGRID 2019: 430-439 - [c20]Hiroki Naganuma, Rio Yokota:
A Performance Improvement Approach for Second-Order Optimization in Large Mini-batch Training. CCGRID 2019: 696-703 - [c19]Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, Satoshi Matsuoka:
Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Networks. CVPR 2019: 12359-12367 - [c18]Yohei Tsuji, Kazuki Osawa, Yuichiro Ueno, Akira Naruse, Rio Yokota, Satoshi Matsuoka:
Performance Optimizations and Analysis of Distributed Deep Learning with Approximated Second-Order Optimization Method. ICPP Workshops 2019: 21:1-21:8 - [c17]Satoshi Ohshima, Ichitaro Yamazaki, Akihiro Ida, Rio Yokota:
Optimization of Numerous Small Dense-Matrix-Vector Multiplications in H-Matrix Arithmetic on GPU. MCSoC 2019: 9-16 - [c16]Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz Khan, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota:
Practical Deep Learning with Bayesian Principles. NeurIPS 2019: 4289-4301 - [i19]Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota, Mohammad Emtiyaz Khan:
Practical Deep Learning with Bayesian Principles. CoRR abs/1906.02506 (2019) - [i18]Rise Ooi, Takeshi Iwashita, Takeshi Fukaya, Akihiro Ida, Rio Yokota:
Effect of Mixed Precision Computing on H-Matrix Vector Multiplication in BEM Analysis. CoRR abs/1911.00093 (2019) - 2018
- [j11]Huda Ibeid
, Rio Yokota
, Jennifer Pestana
, David E. Keyes
:
Fast multipole preconditioners for sparse matrices arising from elliptic equations. Comput. Vis. Sci. 18(6): 213-229 (2018) - [c15]Ichitaro Yamazaki, Ahmad Abdelfattah, Akihiro Ida, Satoshi Ohshima, Stanimire Tomov
, Rio Yokota, Jack J. Dongarra:
Performance of Hierarchical-matrix BiCGStab Solver on GPU Clusters. IPDPS 2018: 930-939 - [c14]Satoshi Ohshima, Ichitaro Yamazaki, Akihiro Ida, Rio Yokota:
Optimization of Hierarchical Matrix Computation on GPU. SCFA 2018: 274-292 - [e5]Rio Yokota, Weigang Wu:
Supercomputing Frontiers - 4th Asian Conference, SCFA 2018, Singapore, March 26-29, 2018, Proceedings. Lecture Notes in Computer Science 10776, Springer 2018, ISBN 978-3-319-69952-3 [contents] - [e4]Rio Yokota, Michèle Weiland, David E. Keyes, Carsten Trinitis:
High Performance Computing - 33rd International Conference, ISC High Performance 2018, Frankfurt, Germany, June 24-28, 2018, Proceedings. Lecture Notes in Computer Science 10876, Springer 2018, ISBN 978-3-319-92039-9 [contents] - [e3]Rio Yokota, Michèle Weiland, John Shalf, Sadaf R. Alam:
High Performance Computing - ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, June 28, 2018, Revised Selected Papers. Lecture Notes in Computer Science 11203, Springer 2018, ISBN 978-3-030-02464-2 [contents] - [i17]Mustafa Abdul Jabbar, Mohammed A. Al Farhan, Noha Al-Harthi, Rui Chen
, Rio Yokota, Hakan Bagci
, David E. Keyes
:
Extreme Scale FMM-Accelerated Boundary Integral Equation Solver for Wave Scattering. CoRR abs/1803.09948 (2018) - [i16]Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, Satoshi Matsuoka:
Second-order Optimization Method for Large Mini-batch: Training ResNet-50 on ImageNet in 35 Epochs. CoRR abs/1811.12019 (2018) - 2017
- [c13]Mustafa Abdul Jabbar
, Mohammed A. Al Farhan, Rio Yokota
, David E. Keyes
:
Performance Evaluation of Computation and Communication Kernels of the Fast Multipole Method on Intel Manycore Architecture. Euro-Par 2017: 553-564 - [c12]Kazuki Osawa, Rio Yokota:
Evaluating the Compression Efficiency of the Filters in Convolutional Neural Networks. ICANN (2) 2017: 459-466 - [c11]Kazuki Osawa, Akira Sekiya, Hiroki Naganuma, Rio Yokota:
Accelerating Matrix Multiplication in Deep Learning by Using Low-Rank Approximation. HPCS 2017: 186-192 - [c10]Mustafa Abdul Jabbar
, George S. Markomanolis
, Huda Ibeid
, Rio Yokota
, David E. Keyes
:
Communication Reducing Algorithms for Distributed Hierarchical N-Body Problems with Boundary Distributions. ISC 2017: 79-96 - [e2]Julian M. Kunkel, Rio Yokota, Pavan Balaji, David E. Keyes:
High Performance Computing - 32nd International Conference, ISC High Performance 2017, Frankfurt, Germany, June 18-22, 2017, Proceedings. Lecture Notes in Computer Science 10266, Springer 2017, ISBN 978-3-319-58666-3 [contents] - [e1]Julian M. Kunkel, Rio Yokota, Michela Taufer
, John Shalf:
High Performance Computing - ISC High Performance 2017 International Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG, P^3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt, Germany, June 18-22, 2017, Revised Selected Papers. Lecture Notes in Computer Science 10524, Springer 2017, ISBN 978-3-319-67629-6 [contents] - [i15]Mustafa Abdul Jabbar, George S. Markomanolis, Huda Ibeid
, Rio Yokota
, David E. Keyes
:
Communication Reducing Algorithms for Distributed Hierarchical N-Body Problems with Boundary Distributions. CoRR abs/1702.05459 (2017) - 2016
- [j10]Huda Ibeid
, Rio Yokota
, David E. Keyes
:
A performance model for the communication in fast multipole methods on high-performance computing platforms. Int. J. High Perform. Comput. Appl. 30(4): 423-437 (2016) - [c9]Keisuke Fukuda
, Motohiko Matsuda, Naoya Maruyama, Rio Yokota
, Kenjiro Taura, Satoshi Matsuoka:
Tapas: An Implicitly Parallel Programming Framework for Hierarchical N-Body Algorithms. ICPADS 2016: 1100-1109 - [c8]Abdelhalim Amer, Satoshi Matsuoka, Miquel Pericàs, Naoya Maruyama, Kenjiro Taura, Rio Yokota
, Pavan Balaji:
Scaling FMM with Data-Driven OpenMP Tasks on Multicore Architectures. IWOMP 2016: 156-170 - [i14]Rio Yokota
, Huda Ibeid
, David E. Keyes:
Fast Multipole Method as a Matrix-Free Hierarchical Low-Rank Approximation. CoRR abs/1602.02244 (2016) - [i13]Huda Ibeid, Rio Yokota, David E. Keyes:
A Matrix-free Preconditioner for the Helmholtz Equation based on the Fast Multipole Method. CoRR abs/1608.02461 (2016) - 2014
- [j9]Hatem Ltaief
, Rio Yokota
:
Data-driven execution of fast multipole methods. Concurr. Comput. Pract. Exp. 26(11): 1935-1946 (2014) - [j8]Yousuke Ohno
, Rio Yokota
, Hiroshi Koyama, Gentaro Morimoto, Aki Hasegawa, Gen Masumoto
, Noriaki Okimoto, Yoshinori Hirano, Huda Ibeid
, Tetsu Narumi, Makoto Taiji
:
Petascale molecular dynamics simulation using the fast multipole method on K computer. Comput. Phys. Commun. 185(10): 2575-2585 (2014) - [j7]Rio Yokota
, George Turkiyyah, David E. Keyes:
Communication Complexity of the Fast Multipole Method and its Algebraic Variants. Supercomput. Front. Innov. 1(1): 63-84 (2014) - [c7]Qi Hu, Nail A. Gumerov, Rio Yokota
, Lorena A. Barba
, Ramani Duraiswami:
Scalable Fast Multipole Accelerated Vortex Methods. IPDPS Workshops 2014: 966-975 - [i12]Huda Ibeid, Rio Yokota, David E. Keyes:
A Performance Model for the Communication in Fast Multipole Methods on HPC Platforms. CoRR abs/1405.6362 (2014) - [i11]Mustafa Abdul Jabbar, Rio Yokota, David E. Keyes:
Asynchronous Execution of the Fast Multipole Method Using Charm++. CoRR abs/1405.7487 (2014) - [i10]Rio Yokota, George Turkiyyah, David E. Keyes:
Communication Complexity of the Fast Multipole Method and its Algebraic Variants. CoRR abs/1406.1974 (2014) - 2013
- [j6]Rio Yokota
, Lorena A. Barba
, Tetsu Narumi, Kenji Yasuoka:
Petascale turbulence simulation using a highly parallel fast multipole method on GPUs. Comput. Phys. Commun. 184(3): 445-455 (2013) - [c6]Abdelhalim Amer, Naoya Maruyama, Miquel Pericàs, Kenjiro Taura, Rio Yokota
, Satoshi Matsuoka:
Fork-Join and Data-Driven Execution Models on Multi-core Architectures: Case Study of the FMM. ISC 2013: 255-266 - [i9]Rio Yokota
, Jennifer Pestana, Huda Ibeid
, David E. Keyes:
Fast Multipole Preconditioners for Sparse Matrices Arising from Elliptic Equations. CoRR abs/1308.3339 (2013) - 2012
- [j5]Rio Yokota
, Lorena A. Barba
:
Hierarchical N-body Simulations with Autotuning for Heterogeneous Systems. Comput. Sci. Eng. 14(3): 30-39 (2012) - [j4]Rio Yokota
, Lorena A. Barba
:
A tuned and scalable fast multipole method as a preeminent algorithm for exascale systems. Int. J. High Perform. Comput. Appl. 26(4): 337-346 (2012) - [c5]Enas Yunis, Rio Yokota
, Aron J. Ahmadia:
Scalable Force Directed Graph Layout Algorithms Using Fast Multipole Methods. ISPDC 2012: 180-187 - [c4]Kenjiro Taura, Jun Nakashima, Rio Yokota
, Naoya Maruyama:
A Task Parallel Implementation of Fast Multipole Methods. SC Companion 2012: 617-625 - [c3]Qi Hu, Nail A. Gumerov, Rio Yokota
, Lorena A. Barba
, Ramani Duraiswami:
Abstract: Scalable Fast Multipole Methods for Vortex Element Methods. SC Companion 2012: 1408 - [c2]Qi Hu, Nail A. Gumerov, Rio Yokota, Lorena A. Barba, Ramani Duraiswami
:
Poster: Scalable Fast Multipole Methods for Vortex Element Methods. SC Companion 2012: 1409 - [i8]Hatem Ltaief
, Rio Yokota
:
Data-Driven Execution of Fast Multipole Methods. CoRR abs/1203.0889 (2012) - [i7]Rio Yokota
:
An FMM Based on Dual Tree Traversal for Many-core Architectures. CoRR abs/1209.3516 (2012) - 2011
- [j3]Rio Yokota
, Jaydeep P. Bardhan, Matthew G. Knepley
, Lorena A. Barba
, Tsuyoshi Hamada:
Biomolecular electrostatics using a fast multipole BEM on up to 512 gpus and a billion unknowns. Comput. Phys. Commun. 182(6): 1272-1283 (2011) - [i6]Rio Yokota, Lorena A. Barba:
A Tuned and Scalable Fast Multipole Method as a Preeminent Algorithm for Exascale Systems. CoRR abs/1106.2176 (2011) - [i5]Rio Yokota, Tetsu Narumi, Lorena A. Barba, Kenji Yasuoka:
Petascale turbulence simulation using a highly parallel fast multipole method. CoRR abs/1106.5273 (2011) - [i4]Rio Yokota, Lorena A. Barba:
Fast N-body Simulations on GPUs. CoRR abs/1108.5815 (2011) - [i3]Rio Yokota, Lorena A. Barba:
Fast Multipole Method vs. Spectral Method for the Simulation of Isotropic Turbulence on GPUs. CoRR abs/1110.2921 (2011) - 2010
- [i2]Rio Yokota, Tsuyoshi Hamada, Jaydeep P. Bardhan, Matthew G. Knepley, Lorena A. Barba:
Biomolecular Electrostatics Simulation by an FMM-based BEM on 512 GPUs. CoRR abs/1007.4591 (2010)
2000 – 2009
- 2009
- [j2]Rio Yokota
, Tetsu Narumi, Ryuji Sakamaki, Shun Kameoka, Shinnosuke Obi, Kenji Yasuoka:
Fast multipole methods on a cluster of GPUs for the meshless simulation of turbulence. Comput. Phys. Commun. 180(11): 2066-2078 (2009) - [c1]Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota
, Kenji Yasuoka, Keigo Nitadori, Makoto Taiji:
42 TFlops hierarchical N-body simulations on GPUs with applications in both astrophysics and turbulence. SC 2009 - [i1]Rio Yokota, Lorena A. Barba, Matthew G. Knepley:
PetRBF--A parallel O(N) algorithm for radial basis function interpolation. CoRR abs/0909.5413 (2009) - 2007
- [j1]Rio Yokota
, Tarun Kumar Sheel, Shinnosuke Obi:
Calculation of isotropic turbulence using a pure Lagrangian vortex method. J. Comput. Phys. 226(2): 1589-1606 (2007)
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
load content from web.archive.org
Privacy notice: By enabling the option above, your browser will contact the API of web.archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
Tweets on dblp homepage
Show tweets from on the dblp homepage.
Privacy notice: By enabling the option above, your browser will contact twitter.com and twimg.com to load tweets curated by our Twitter account. At the same time, Twitter will persistently store several cookies with your web browser. While we did signal Twitter to not track our users by setting the "dnt" flag, we do not have any control over how Twitter uses your data. So please proceed with care and consider checking the Twitter privacy policy.
last updated on 2022-03-20 21:37 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint